

The Information Velocity of Packet-Erasure Links

Anatoly Khina, Tel Aviv University

Joint work with Elad Domanovitz, Tel Aviv University Tal Philosof, Samsung Research

IPG Seminar, EPFL

April 5, 2023

Outline

- Motivation & introduction
- Model: information velocity (IV) & error exponent (EE)
- Main results
- Derivation: IV & EE of a single packet
- Derivation: IV & EE of a stream of packets
- Numerical results
- Summary & outlook

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications ⇒ **relaying**
 - Cellular vehicle-to-everything (C-V2X): Platooning (URLLC)

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications ⇒ **relaying**
 - Open Radio Access Network (O-RAN): shared cell, cascade mode

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications ⇒ **relaying**

Requires

- highly-reliable packet transmission
- Low latency

Fundamental limits?

- *"First order":* Given delay, max # links a message can "reliably" traverse
- "Second order": Error probability exponential decay rate

Comparison of the Two Problems

Property	Classical problem	Dual problem
# links	Single	Multiple
# messages	Multiple	SingleWill be extended to multiple messages

Comparison of the Two Problems

	Property	Classical problem	Dual problem
		Capacity, C: ✓	Information Velocity (IV), \vec{V} : ?
	Fundamental limit ("First order")	• Max rate R of $\left[\frac{\text{\# Messages}}{\text{Time steps}}\right]$	• Max speed α of $\left[\frac{\# \text{Links}}{\text{Time steps}}\right]$
		• Error probability $P_e \xrightarrow{\text{Time} \to \infty} 0$	• Error probability $P_e \xrightarrow{\text{Time} \to \infty} 0$
	Fundamental limit ("Second order")	Error Exponent, $E: @ R < C \neq$	Error Exponent (EE), $E: @ \alpha < \vec{V}$?
		$E(R) = \lim_{\text{Time}\to\infty} -\frac{1}{\text{Time}}\log P_e$	$E(\alpha) = \lim_{\text{Time}\to\infty} -\frac{1}{\text{Time}}\log P_e$
Clas	Classical: Batch encoding Batch encoding Batch decoding		
Dua	A: X_1 A_1 Transmitter (Node 1)	$ \underbrace{\text{Link 1}} \text{Node 2} \underbrace{\text{Link 2}} \text{Orde 2} \underbrace{\text{Corde 2}} \text{Orde 2} \underbrace{\text{Orde 2}} Or$	Node r Link r Receiver (Node $r + 1$) B_1
A single packet			Causally-decoded

Prior Art & Related Work

Single bit through two BSCs (bit-flip links):

- [Jog–Loh IT'20][Huleihel–Polyanskiy–Shayevitz ISIT'19]: Bounds on the EE
- [Ling–Scarlett ISIT'21]: EE = EE of single BSC

Finite number of bits through a **cascade** of BSCs (bit-flip links):

- *p* probability of bit flip
- [Rajagopalan–Schulman ACM'94]: $\vec{V} \leq 1 2p$
 - This result is immediate given the IV for erasure links that we will see in this talk
- [Ling–Scarlett, ArXiv'21]: $0 < \vec{V} \le (1 2p)^2$

What about an online setup?

• Causally, constantly, arriving messages

Prior Art & Related Work

Cascaded computation: Stream of packets through *n* servers

- Infinite buffers
- Stochastic arrival and service curves
- Stochastic network calculus [Fidler–Rizk Comm surveys '15]:

Assuming independent service times, mean E2E delay ∝ # servers

Prior Art & Related Work

Cascaded computation: Stream of packets through *n* servers

- Infinite buffers
- Stochastic arrival and service curves
- Stochastic network calculus [Fidler–Rizk Comm surveys '15]:

Assuming independent service times, mean E2E delay ∝ # servers

System Model

- Cascade of **packet-erasure** links
- IID Bernoulli erasures in each link
- Erasures are independent across different links (and times)
- Instantaneous perfect acknowledgment (ACK) feedback
- Stream of causally arriving packets (at random, periodically, ...)
- In-order communications

System Model

- Source stream: Packet $m \in \mathbb{Z}$ arrives at time $A_m \in \mathbb{Z}$
- Output of link i serves as the input to node i + 1
- At each time step: Packet sent in link i is erased with probability p_i
 - Packets are acknowledged upon arrival
 - If packet erased, it is retransmitted until successful arrival at next node
- Departure process
 - Packet $m \in \mathbb{Z}$ arrives at final receiver at time $B_m \in \mathbb{Z}$

System Model

• Arrive-failure probability: $P_{e}(N) \triangleq \sup_{m \in \mathbb{Z}} \Pr(B_{m} > A_{m} + N)$

• Information velocity:
$$\vec{V} \triangleq \sup \left\{ \alpha > 0 \middle| r = \lceil \alpha N \rceil, \lim_{N \to \infty} P_e(N) = 0 \right\}$$

• $r \propto N$ is the proper growth rate

• Error exponent:
$$E \triangleq \lim_{N \to \infty} -\frac{1}{N} \log P_e(N)$$
 for $\alpha < \vec{V}$

Event: t = 0: Start

Next: t = 1: Packet arrival ($A_1 = 1$)

Event: t = 1: Packet arrival ($A_1 = 1$)

Next: t = 2: Packet arrival ($A_2 = 2$) & Link 1 erasure

Event: t = 2: Packet arrival ($A_2 = 2$) & Link 1 erasure

Next: t = 3: Success @ Link 1

Event: t = 3: Success @ Link 1

Next: t = 4: Failure @ Link 1, success @ Link 2 ($B_1 = 4$), packet arrival ($A_3 = 4$)

Event: t = 4: Failure @ Link 1, success @ Link 2 ($B_1 = 4$), packet arrival ($A_3 = 4$) Next:

Main Results

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

- Homogeneous links: $p_1 = p_2 = \dots = p_r \triangleq p$
- IID Bernoulli arrival input process: IID packet arrivals with probability $\lambda < 1-p$
- $\Rightarrow \text{IV in steady state: } \vec{V} = 1 \frac{p}{1-\lambda}$ $\Rightarrow \text{EE in steady state: for } \alpha < \vec{V} : E = \mathbb{D} \left(\alpha \| 1 - \frac{p}{1-\lambda} \right)$ $\Rightarrow \text{For } \lambda \ge 1 - p : \vec{V} = 0$

Kullback–Leibler divergence: $\mathbb{D}(q||s) \triangleq q \log \frac{q}{s} + (1-q) \log \frac{1-q}{1-s}$

Main Results

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

- Homogeneous links: $p_1 = p_2 = \dots = p_r \triangleq p$
- Stationary ergodic input process of arrival rate $\lambda < 1 p$
- \rightarrow IV in steady state: $\vec{V} \stackrel{=}{\leq} 1 \frac{p}{1-\lambda}$
- \rightarrow EE in steady state: for $\alpha < \vec{V}$: $E \leq \mathbb{D}\left(\alpha \| 1 \frac{p}{1-\lambda}\right)$

 \rightarrow For $\lambda \ge 1 - p$: $\vec{V} = 0$

Main Results

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

- Homogeneous links: $p_1 = p_2 = \dots = p_r \triangleq p$
- **Deterministic periodic input process:** A packet arrives every $1/\lambda$ time steps
 - More generally, arrivals at times $[i \cdot a]$ for a fixed $a \in \mathbb{Q}$ and all $i \in \mathbb{Z}$
- \rightarrow IV in steady state: $\vec{V} \stackrel{=}{\leq} 1 \frac{p}{1-\lambda}$
- \rightarrow **EE in steady state:** for $\alpha < \vec{V}$: $E \leq \mathbb{D}\left(\alpha \| 1 \frac{p}{1-\lambda}\right)$

$$\rightarrow$$
 For $\lambda \ge 1 - p$: $\vec{V} = 0$

Main Results: Extensions

- Closed-form results for heterogeneous links as well
 - Based on large deviation / method of types techniques
- Treatment can be extended to cyclostationary cycloergodic input processes
 - Cycloergodic processes [Boyles–Gardner IT'83]

and more generally, to arrival process whose long time average \rightarrow mean rate

Main Results: Proof Plan

- Single source packet
- Stream of packets for different arrival processes:
 - IID Bernoulli arrival input process—by lifting the results for a single packet
 - Stationary ergodic input process
 - Periodic (deterministic) arrivals

Single Packet

Single Packet, Single Link

- Assume the packet is available at the sender at time A = 1
- Single link: r = 1

• Arrive-failure probability:

$$P_e(N) = p^N = \exp\{-N \cdot (-\log p)\}$$

$$\downarrow$$

$$E = -\log p$$

A single packet

Causally-decoded

26

Homogeneous links: $p_1 = p_2 = \cdots = p_r \triangleq p$

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

• IV:
$$\vec{V} = 1 - p$$

• **EE:** for
$$\alpha < \vec{V}$$
: $E = \mathbb{D}(\alpha || 1 - p) \triangleq \alpha \log \frac{\alpha}{1 - p} + (1 - \alpha) \log \frac{1 - \alpha}{p}$

• P_e over r links across N time steps is bounded as

$$\frac{(1-p)\sqrt{N}\exp\left\{-N\cdot\mathbb{D}\left(\frac{r-1}{N}\|1-p\right)\right\}}{\sqrt{8(r-1)(N-r+1)}} \leq P_e(N) \leq \min\left\{\frac{\exp\left\{-(N-1)\cdot\mathbb{D}\left(\frac{r}{N-1}\right)\left|1-p\right)\right\}}{\sqrt{2\pi(r-1)(N-r+1)}} \cdot \frac{\exp\left\{-N\cdot\mathbb{D}\left(\frac{r-1}{N}\|1-p\right)\right\}}{1-\exp\left\{-N\cdot\mathbb{D}\left(\frac{r-1}{N}\|1-p\right)\right\}}\right\}$$

Corollary: For r = o(N), $E = -\log p$

Proof:

- t_i —time of arrival at node i + 1 (over link i)
- $\tau_i \triangleq t_i t_{i-1}$ -delay caused by link i
- Clearly, $\tau_1, \tau_2, \ldots, \tau_r \sim \text{IID} \, \operatorname{Geo}(1-p)$

$$P_e(N) = \Pr\left(\sum_{i=1}^r \tau_i > N\right)$$

IV expression derivation: For $\alpha \triangleq r/N$

$$\lim_{N \to \infty} P_e(N) = \lim_{N \to \infty} \Pr\left(\frac{1}{r} \sum_{i=1}^r \tau_i > \frac{N}{r}\right) = \begin{cases} 0, & \mathbb{E}[\tau] < 1/\alpha\\ 1, & \mathbb{E}[\tau] > 1/\alpha \end{cases}$$

•
$$\mathbb{E}[\tau] = \frac{1}{1-p} \gtrless \frac{1}{\alpha} \implies \vec{V} = 1-p$$

EE expression derivation: By Chernoff's upper bound on P_e :

$$P_e(N) = \Pr\left(\sum_{i=1}^r \tau_i > N\right) \le \exp\left\{-\sup_{s>0}\{(N-1)s - \alpha \log M_\tau(s)\}\right\}$$
$$= \exp\left\{-(N-1) \cdot \mathbb{D}\left(\frac{r}{N-1} \middle| \left|1-p\right)\right\}$$

By Cramér's theorem, the above achievable exponent is tight:

$$E = -\sup_{s>0} \{s - \alpha \log M_{\tau}(s)\} = \mathbb{D}(\alpha || 1 - p)$$

where $M_{\tau}(s) \triangleq \mathbb{E}[\exp\{s\tau\}] = \frac{(1-p)\exp\{s\}}{1-p\exp\{s\}}$

Remarks:

- $1 p = \vec{V}$ —expected # relays the message traverses per time step
- Can be used as alternative def. of IV over erasure links
- Original def. is akin to "almost lossless source coding" whereas alternative def. is akin to "lossless (variable-length) source coding"

$1 \operatorname{Packet} \operatorname{over} r \operatorname{Link} \Leftrightarrow r \operatorname{Packets} \operatorname{over} 1 \operatorname{Link}$

Property	Classical problem	Dual problem
# links	Single	Multiple
# messages	Multiple	Single
Homogeneous erasure links	Capacity: $C = 1 - p$	Information Velocity (IV) $\vec{V} = 1 - p$

- Observation for homogeneous links: $C = \vec{V}$
- Is it a coincidence?

$1 \operatorname{Packet} \operatorname{over} r \operatorname{Link} \Leftrightarrow r \operatorname{Packets} \operatorname{over} 1 \operatorname{Link}$

Property	Classical problem	Dual problem
# links	Single	Multiple
# messages	Multiple	Single
Homogeneous erasure links	Capacity: $C = 1 - p$	Information Velocity (IV) $\vec{V} = 1 - p$

- Observation for homogeneous links: $C = \vec{V}$
- Is it a coincidence? Of course not. 🙂

$1 \operatorname{Packet} \operatorname{over} r \operatorname{Link} \Leftrightarrow r \operatorname{Packets} \operatorname{over} 1 \operatorname{Link}$

Homogeneous erasure links:

- The two problems are in fact equivalent for erasure links
- More generally, for erasure links with ACK feedback:

m messages over *r* links \Leftrightarrow *r* messages over *m* links

Remark: For single packet transmission, the same results hold without feedback

1 Packet over $r \operatorname{Link} \Leftrightarrow r$ Packets over 1 Link

Heterogeneous erasure links: The parallel "classical problem" is weird:

- Upon a successful packet-arrival, the erasure probability is chosen from **P**
- Erasure probability remains fixed until the next success

Alternative Problem: P(i) is picked with probability Q(i)

• The capacity of the alternative setting is higher (similar to waiting-time paradox)

1 Packet over $r \operatorname{Link} \Leftrightarrow r$ Packets over 1 Link

What about other (non-erasure) links?

1 Packet over $r \operatorname{Link} \Leftrightarrow r$ Packets over 1 Link

What about other (non-erasure) links?

[Ling–Scarlett IT'22]: For a single bit transmitted over a cascade of homogeneous BSCs,

 $\vec{V} > C$

for $p \rightarrow 0$.

Stream of Causally Arriving Packets

- Cascade of **packet-erasure** links
- IID Bernoulli erasures in each link
- Erasures are independent across different links (and times)
- Instantaneous perfect acknowledgment (ACK) feedback
- Stream of causally arriving packets (at random, periodically, ...)
- In-order communications

- Source stream: Packet $m \in \mathbb{Z}$ arrives at time $A_m \in \mathbb{Z}$
- Output of link i serves as the input to node i + 1
- At each time step: Packet sent in link i is erased with probability p_i
 - Packets are acknowledged upon arrival
 - If packet erased, it is retransmitted until successful arrival at next node
- Departure process
 - Packet $m \in \mathbb{Z}$ arrives at final receiver at time $B_m \in \mathbb{Z}$

• Arrive-failure probability: $P_{e}(N) \triangleq \sup_{m \in \mathbb{Z}} \Pr(B_{m} > A_{m} + N)$

• Information velocity:
$$\vec{V} \triangleq \sup \left\{ \alpha > 0 \middle| r = \lceil \alpha N \rceil, \lim_{N \to \infty} P_e(N) = 0 \right\}$$

• $r \propto N$ is the proper growth rate

• Error exponent:
$$E \triangleq \lim_{N \to \infty} -\frac{1}{N} \log P_e(N)$$
 for $\alpha < \vec{V}$

- We know how the first packet behaves
- The second packet will arrive slower (probabilistically)
- The third even slower

• Steady state—we will concentrate on this

System Model: Queuing Theory Perspective

- Input stream: positive arrival (average) rate $\lambda > 0$
- Condition for stable steady-state system: $\lambda < 1 p_i \quad \forall i \in \{1, ..., r\}$
- We will concentrate on homogeneous case: $p_1 = p_2 = \dots = p_r \triangleq p$

Arrival processes:

- IID Bernoulli arrivals—by lifting the results for a single packet
- Stationary ergodic process
- Periodic (deterministic) arrivals

by converging to IID Bernoulli arrivals...

System Model: Queuing Theory Perspective

- Input stream: positive arrival (average) rate $\lambda > 0$
- Condition for stable steady-state system: $\lambda < 1 p_i \quad \forall i \in \{1, ..., r\}$
- We will concentrate on homogeneous case: $p_1 = p_2 = \dots = p_r \triangleq p$

Arrival processes:

- IID Bernoulli arrivals—by lifting the results for a single packet
- Stationary ergodic process
- Periodic (deterministic) arrivals

by converging to IID Bernoulli arrivals...

Burke's Theorem

- IID $\mathcal{Ber}(1-p)$ service times \Leftrightarrow IID $\mathcal{Geo}(1-p)$ interservice times
- Waiting time = queueing time + service time

Theorem [Hsu–Burke TCOM'76][Pujolle–Claude–Seret '86][Desert–Daduna '02]:

Assume a **single** queue in **steady state** with

- IID $\mathcal{Ber}(\lambda)$ arrival times $(\lambda < 1-p)$
- IID $\mathcal{Ber}(1-p)$ service times
- \Rightarrow IID $\mathcal{Ber}(\lambda)$ departure times
- \Rightarrow # packets in queue at time t is independent of departure process prior to time t
- \Rightarrow Waiting time of a packet $\sim Geo\left(1-\frac{p}{1-\lambda}\right) \coprod$ departure process before packet's departure
- Discrete-time analogue of classical results of [Burke '56][Reich '57][Jackson '54]

Reich's Theorem for Tandem Queues

Theorem [Hui '90][Prabhakar–Gallager TIT'03]:

Cascade of *r* **queues** in **steady state** with

- IID $\mathcal{Ber}(\lambda)$ arrival times $(\lambda < 1 p \quad \forall i \in \{1, ..., r\})$
- IID $\mathcal{B}er(1-p)$ service times at server i
- Service times are independent across servers (and within)
- ⇒ Waiting times of a packet are independent across queues

$$\Rightarrow$$
 Waiting time at queue $i \sim Geo\left(1 - \frac{p}{1-\lambda}\right)$

- ⇒ # packets in different queues are independent at a given time
- Discrete-time analogue of a classical result of [Reich '57]

Surprising Hidden Implication [Burke '63]

Waiting time = queueing time + service time

 $W_1 = Q_1 + S_1$ $W_2 = Q_2 + S_2$

- The waiting times are independent: $W_1 \perp W_2$
- The service times are independent: $S_1 \perp S_2$
- Service times are independent of respective queueing times: $S_1 \perp Q_1$, $S_2 \perp Q_2$
- But the queueing times are dependent! $Q_1 \not \sqsubseteq Q_2$
- **Proof:** By direct calculation, $Pr(Q_2 = 0 | Q_1 = 0) > Pr(Q_2 = 0)$. Alternatively,
 - $S_2 \perp (Q_1, Q_2, S_1)$ and $Q_2 + S_2 = W_2 \perp W_1 \Rightarrow Q_2 \perp W_1$
 - $Q_2 \not \perp S_1$ since for $S_1 \to \infty$, $Q_2 \to 0$
 - $Q_2 \perp W_1 = S_1 + Q_1$

Cascade of r Independent Links, IID Bernoulli Arrivals

Corollary [Domanovitz–Philosof–K. INFOCOM'22]:

- Cascade of r queues in steady state with
- IID $\mathcal{B}er(\lambda)$ arrival times $(\lambda < 1-p)$
- IID $\mathcal{B}er(1-p)$ service times at server i
- Service times are independent across servers (and within)
- \Rightarrow Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions:

• IV:
$$\vec{V} = 1 - \frac{p}{1-\lambda}$$

• EE: for $\alpha < \vec{V}$: $E = \mathbb{D} \left(\alpha \| 1 - \frac{p}{1-\lambda} \right)$

Heterogeneous links: Replace p_i with $\frac{p_i}{1-\lambda}$ in single-packet expressions

Stationary Ergodic Arrival Process

• Assume now a stationary ergodic arrival process of rate λ

Theorem [Mountford–Prabhakar '95]:

- Homogeneous queues
- For $r \to \infty$, the departure process converges to IID $\mathcal{Ber}(\lambda)$ arrivals
- Proof uses the coupling technique of [Anantharam '93]

Event: Initial state of the system

Next: Service @ Server 1

Event: Service @ Server 1

Next: Recoloring @ Server 2

Event: Recoloring @ Server 2

Next: Service @ Server 2

Event: Service @ Server 2

Next: Service @ Server 1

Event: Service @ Server 1

Next: Recoloring @ Server 2

Event: Recoloring @ Server 2

Next: Service @ Server 1

Event: Service @ Server 1

Next: Merge: Red + Blue = Yellow

Event: Merge: Red + Blue = Yellow

Stationary Ergodic Arrival Process: Proof Idea

For any two ergodic input processes of the same rate λ

- Fraction of yellows increases with each queue
- Fraction of yellows $\rightarrow 1$ for $r \rightarrow \infty$

 \Rightarrow Output processes converge to the same process

- Take one the input processes to have IID $\mathcal{B}er(\lambda)$ arrivals
 - \Rightarrow By Burke's theorem the output of Server 1 has also IID $\mathcal{Ber}(\lambda)$ arrivals
 - \Rightarrow Holds also for all subsequent servers

 \Rightarrow Any ergodic input process converges to IID $\mathcal{Ber}(\lambda)$ arrivals

Stationary Ergodic Arrival Process

• Is that enough to derive IV and EE results?

Stationary Ergodic Arrival Process

- Is it enough to derive IV and EE results? No ⊗
- It suffices to prove impossibility (converse) results
- For achievability: Requires bounding the effect of red/blue packets or a robustness/continuity result

Cascade of r Independent Links, Ergodic Arrival Process

Theorem [Domanovitz–Philosof–K.]:

Cascade of r queues in steady state with

- Ergodic arrival times of rate $\lambda < 1 p$
- IID $\mathcal{Ber}(1-p)$ service times at server i
- Service times are independent across servers (and within)
- Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions
 - IV: $\vec{V} \stackrel{=}{\leq} 1 \frac{p}{1-\lambda}$ (same as for IID Bernoulli arrivals)
 - **EE:** for $\alpha < \vec{V}$: $E \leq \mathbb{D}\left(\alpha \| 1 \frac{p}{1-\lambda}\right)$ (upper bounded by EE of IID Bernoulli arrivals)
- Proof based on the technique of [Mountford–Prabhakar '95]

Heterogeneous links: Similar results apply.

Periodic (Deterministic) Arrivals

• Assume now periodic arrivals: A packet arrives every $1/\lambda$ time steps

Extension of last theorem [Domanovitz–Philosof–K.]:

- Homogeneous/heterogeneous queues
- \Rightarrow For $r \rightarrow \infty$, the departure process converges to IID $\mathcal{Ber}(\lambda)$ arrivals

Remark: Can be extended to cyclostationary cycloergodic processes

- Cycloergodic processes [Boyles–Gardner IT'83].
- More generally, extends to any input process whose long-time average converges to a deterministic value a.s.

Cascade of *r* Independent Links, Periodic Arrivals

Corollary [Domanovitz–Philosof–K.]:

• Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions

• IV: $\vec{V} \stackrel{=}{\leq} 1 - \frac{p}{1-\lambda}$ (same as for IID geometric interarrivals)

• **EE:** for
$$\alpha < \vec{V}$$
 : $E \stackrel{=}{\leq} \mathbb{D}\left(\alpha \| 1 - \frac{p}{1-\lambda}\right)$ (same as for IID geometric interarrivals)

• Heterogeneous links: Replace p_i with $\frac{p_i}{1-\lambda}$ in single-packet expressions (same as for IID geometric interarrivals)

Numerical Results: IV versus Arrival Rate

• Homogeneous links with p = 0.001, 0.01, 0.1

Numerical results: Arrive-Failure Probability

- Homogeneous links with p = 0.01
- $\lambda = 0.5$
- $\vec{V} = 1 p = 0.99$

• r = 20, 100, 200, 1000 relays

Numerical Results: Different Arrival Processes

(a) Geometric i.i.d. interarrival times.

(c) Gilbert–Eliott arrival process with $\gamma = 0.01$, $\beta = 0.1$. $\varepsilon = 0.45$.

- $\lambda = 0.5, \mathbf{P} = (0.01, 0.1), \mathbf{Q} = (0.5, 0.5)$
- Gilbert–Elliott model: Two-state Markov model
 - @Good state—packet arrives with probability ϵ
 - **@Bad state**—packet arrives with probability 1

Extensions

- Heterogeneous links (@backup slides & paper)
- Several servers at each queue
- 2D regular grids

Discussion & Future Research

- We assumed feedback ⇒ What is the IV without/with delayed feedback?
 - We know the answer for a single packet since feedback is not needed
- We studied the behavior of a single/first packet and in stead state
- What is the IV for intermediate ("transient") packets?
- All the results are easily adaptable to the continuous-time setting
 - In fact the queueing theory results were originally derived for this setting
 - "Poisson IV"
- We assumed *in-order* transmission of *all* packets
 - "Slow" packets can be thrown away to improve overall performance
- "Anytime Anywhere Reliability" important if data pertain to control
- Other channels with/without feedback & more general networks

IV League

Backup Slides

Single Packet, Homogeneous Links

Bounds on P_e via binomial coefficient bounds:

$$P_e(N) = \Pr\left(\sum_{i=1}^r \tau_i > N\right) = \sum_{j=N+1}^{\infty} {j-1 \choose r-1} (1-p)^r p^{r-j}$$

Using the entropy bounds on binomial coeff. [Ash's book]: $H_b(q) \triangleq -q \log q - (q-1) \log(1-q)$

$$\frac{1}{2}\exp\left\{nH_b\left(\frac{k}{n}\right)\right\}\sqrt{\frac{n}{2k(n-k)}} \le \binom{n}{k} \le \frac{1}{\sqrt{\pi}}\exp\left\{nH_b\left(\frac{k}{n}\right)\right\}\sqrt{\frac{n}{2k(n-k)}},$$

yields

$$\begin{split} P_e(N) &\leq \sum_{\ell=N}^{\infty} \frac{(1-p)\sqrt{\ell} \exp\left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{\ell} \middle| \left| 1-p \right)\right\}}{\sqrt{2\pi(r-1)(\ell+1-r)}} \leq \sum_{\ell=N}^{\infty} \frac{(1-p)\sqrt{N} \exp\left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{N} \middle| \left| 1-p \right)\right\}}{\sqrt{2\pi(r-1)(N+1-r)}} \\ &= \frac{(1-p)\sqrt{N}}{\sqrt{2\pi(r-1)(N-r+1)}} \cdot \frac{\exp\left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} || 1-p\right)\right\}}{1-\exp\left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} || 1-p\right)\right\}} \end{split}$$

Single Packet, Homogeneous Links

Bounds on P_e via binomial coefficient bounds:

$$P_e(N) = \Pr\left(\sum_{i=1}^r \tau_i > N\right) = \sum_{j=N+1}^{\infty} {j-1 \choose r-1} (1-p)^r p^{r-j}$$

Using the entropy bounds on binomial coeff. [Ash's book]: $H_b(q) \triangleq -q \log q - (q-1) \log(1-q)$

$$\frac{1}{2}\exp\left\{nH_b\left(\frac{k}{n}\right)\right\}\sqrt{\frac{n}{2k(n-k)}} \leq \binom{n}{k} \leq \frac{1}{\sqrt{\pi}}\exp\left\{nH_b\left(\frac{k}{n}\right)\right\}\sqrt{\frac{n}{2k(n-k)}},$$

yields

$$P_e(N) \ge \sum_{\ell=N}^{\infty} \frac{(1-p)\sqrt{\ell} \exp\left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{N} \middle| \left|1-p\right)\right\}}{\sqrt{2 \times 4(r-1)(\ell+1-r)}} \ge \frac{(1-p)\sqrt{N} \exp\left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \middle| \left|1-p\right)\right\}}{\sqrt{8(r-1)(N+1-r)}}$$

Single Packet, Heterogeneous Links

Heterogeneous links: the erasure probabilities of different links-p(1), p(2), ..., p(r)-may differ

- We will consider two settings for the erasure probabilities:
- **1.** Fixed channels-type: Fraction ("type") Q(i) of all r channels have erasure probability P(i)
 - Assume only $S < \infty$ possible channel erasure probabilities (can be lifted):

 $\mathbf{Q} \triangleq [Q(1) \cdots Q(S)], \quad \mathbf{P} \triangleq [P(1) \cdots P(S)]$

Remark: Order of p(1), p(2), ..., p(r) given a certain type **Q** doesn't matter

2. Probabilistic setting: $p(1), p(2), ..., p(r) \in \mathbf{P} \sim \text{IID}$ according to $\widetilde{\mathbf{Q}}$

Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction ("type") Q(i) of all r channels have erasure probability P(i)

$$\mathbf{Q} \triangleq [Q(1) \cdots Q(S)], \quad \mathbf{P} \triangleq [P(1) \cdots P(S)]$$

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

• IV:
$$\vec{V} = 1/\sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$$

• **EE**, 1st expression: for $\alpha < \vec{V}$: $E^{\text{fixed}}(\mathbf{Q}) = (1 - \alpha) \log x + \alpha \sum_{i=1}^{S} Q(i) \log \frac{1 - P(i)x}{1 - P(i)}$ where $x \in (1, 1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1 - P(i)x} = \frac{1}{\alpha}$

Corollary: For r = o(N), EE equals that of worst link: $E = -\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of IV characterization: Define

- $\alpha \triangleq r/N$
- $R(i) \triangleq \#$ links with erasure probability $P(i) \Leftrightarrow Q(i) \equiv R(i)/r$

$$\lim_{N \to \infty} P_e(N) = \lim_{N \to \infty} \Pr\left(\frac{1}{r} \sum_{\ell=1}^r \tau_\ell > \frac{N}{r}\right) = \lim_{N \to \infty} \Pr\left(\sum_{i=1}^s \frac{R(i)}{r} \cdot \frac{1}{R(i)} \sum_{\ell: p_\ell = P(i)} \tau_\ell > \frac{N}{r}\right)$$

$$= \begin{cases} 0, \quad \sum_{i=1}^{S} Q(i) \frac{1}{1 - P(i)} < 1/\alpha \\ 1, \quad \sum_{i=1}^{S} Q(i) \frac{1}{1 - P(i)} > 1/\alpha \end{cases} \Rightarrow \vec{V} = \frac{1}{\sum_{i=1}^{S} \frac{Q(i)}{1 - P(i)}} \end{cases}$$
Proof of (1st) EE expression: By the Gärtner–Ellis theorem

$$E^{\text{fixed}} = -\sup_{\nu>0} \left\{ \nu - \alpha \sum_{i=1}^{S} Q(i) \log M_i(\nu) \right\} = (1 - \alpha) \log x + \alpha \sum_{i=1}^{S} Q(i) \log \frac{1 - P(i)x}{1 - P(i)}$$

where

- $M_i(v) = \frac{(1-P(i))\exp\{v\}}{1-P(i)\exp\{v\}}$ is the moment-generating function of Geo(1-P(i))
- $x \in (1, 1/\max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1 P(i)x} = \frac{1}{\alpha}$

Chernoff's upper bound on P_e : Results in the above EE (achievable only)

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

- IV: $\vec{V} = 1/\sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$
- **EE, 1st expression:** for $\alpha < \vec{V} : E^{\text{fixed}}(\mathbf{Q}) = (1 \alpha) \log x + \alpha \sum_{i=1}^{S} Q(i) \log \frac{1 P(i)x}{1 P(i)}$ where $x \in (1, 1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1 - P(i)x} = \frac{1}{\alpha}$
- **EE, 2nd expression:** for $\alpha < \vec{V} : E^{\text{fixed}}(\mathbf{Q}) = \min_{\substack{U \in \Delta_{S-1} \\ U(i) \ge \frac{\alpha Q(i)}{1 P(i)} \forall i \in [S]}} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)}\right) | 1 P(i)\right)$

where
$$\Delta_{S-1} \triangleq \{(x_1, \dots, x_S) | \sum_{i=1}^S x_i = 1, x_i \ge 0 \forall i\}$$
 is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.

Proof of 2nd EE expression:

- <u>Idea</u>: For each P(i) and Q(i), look at corresponding fraction U(i) of delay steps
- Upper bound: Run over all possible U

$$\begin{split} P_{e}(N) &= \Pr\left(\sum_{i=1}^{r} \tau_{i} > N\right) \leq \sum_{U \in \mathcal{Q}_{N}} \Pr\left(\sum_{\ell: p_{\ell} = P(i)} \tau_{\ell} \geq NU(i) \ \forall i \in [S]\right) \\ &\leq \sum_{U \in \mathcal{Q}_{N}} \prod_{i=1}^{S} \Pr\left(\sum_{\ell: p_{\ell} = P(i)} \tau_{\ell} \geq NU(i)\right) \\ &\stackrel{\cdot}{\leq} (N+1)^{S} \exp\left\{-\min_{\substack{U \in \Delta_{S-1} \\ U(i) \geq \frac{\alpha Q(i)}{1-P(i)} \ \forall i \in [S]} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)}\right| \left|1-P(i)\right)\right\} \end{split}$$

• $Q_N \triangleq All \text{ partitions of } N \text{ balls into } S \text{ cells, divided by } N \text{ (the "type class")}$

Proof of 2nd EE expression:

- <u>Idea</u>: For each P(i) and Q(i), look at corresponding fraction U(i) of delay steps
- Lower bound: Take "worst" possible U

$$P_{e}(N) = \Pr\left(\sum_{i=1}^{r} \tau_{i} > N\right) \ge \max_{U \in Q_{N}} \Pr\left(\sum_{\ell: p_{\ell} = P(i)} \tau_{\ell} > NU(i) \ \forall i \in [S]\right)$$
$$\ge \prod_{i=1}^{S} \Pr\left(\sum_{\ell: p_{\ell} = P(i)} \tau_{\ell} > NU(i)\right)$$
$$\stackrel{\cdot}{\ge} \exp\left\{-\min_{\substack{U \in \Delta_{S-1} \\ U(i) \ge \frac{\alpha Q(i)}{1 - P(i)} \ \forall i \in [S]} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)} \middle| \left|1 - P(i)\right)\right)\right\}$$

• $Q_N \triangleq All \text{ partitions of } N \text{ balls into } S \text{ cells, divided by } N \text{ (the "type class")}$

1. Fixed channels-type:

Fraction ("type") Q(i) of all r channels have erasure probability P(i)

$$\mathbf{Q} \triangleq [Q(1) \cdots Q(S)], \quad \mathbf{P} \triangleq [P(1) \cdots P(S)]$$

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

• IV:
$$\vec{V} = 1/\sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$$

• **EE**, 1st expression: for $\alpha < \vec{V}$: $E^{\text{fixed}}(\mathbf{Q}) = (1 - \alpha) \log x + \alpha \sum_{i=1}^{S} Q(i) \log \frac{1 - P(i)x}{1 - P(i)}$ where $x \in (1, 1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1 - P(i)x} = \frac{1}{\alpha}$

Corollary: For r = o(N), EE equals that of worst link: $E = -\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Probabilistic Setting

2. Probabilistic setting:

$$p(1), p(2), \dots p(r) \in \mathbf{P} \sim \text{IID} \text{ according to } \widetilde{\mathbf{Q}}$$

 $\widetilde{\mathbf{Q}} \triangleq [\widetilde{Q}(1) \cdots \widetilde{Q}(S)], \quad \mathbf{P} \triangleq [P(1) \cdots P(S)]$

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

• IV:
$$\vec{V} = 1/\sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}$$
 (as in fixed-channels type setting)

• **EE**, 1st expression: for $\alpha < \vec{V}$: $E^{\text{prob}}(\widetilde{\mathbf{Q}}) = (1 - \alpha) \log x - \alpha \sum_{i=1}^{S} \widetilde{Q}(i) \log \frac{1 - P(i)}{1 - P(i)x}$

where
$$x \in (1, 1/\max \mathbf{P})$$
 is the solution of $\sum_{i=1}^{S} \tilde{Q}(i) \cdot \{1 - P(i)\} \cdot \frac{1 - \alpha - P(i)x}{\{1 - P(i)x\}^2} = 0$

78

Corollary: For r = o(N), EE equals that of worst link: $E = -\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Probabilistic Setting

• Each τ_{ℓ} is now a mixture of geometric distributions:

•

$$\Pr(\tau = \ell) = \sum_{i=1}^{S} \tilde{Q}(i) \cdot \{P(i)\}^{\ell-1} \cdot \{1 - P(i)\}, \qquad \mathbb{E}[\tau] = \sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1 - P(i)}$$
$$\{\tau_{\ell}\} \text{ are IID}$$

Proof of IV characterization: Repeat proof steps for homogeneous links:

$$\lim_{N \to \infty} P_e(N) = \lim_{N \to \infty} \Pr\left(\frac{1}{r} \sum_{i=1}^r \tau_i > \frac{N}{r}\right) = \begin{cases} 0, & \mathbb{E}[\tau] < 1/\alpha\\ 1, & \mathbb{E}[\tau] > 1/\alpha \end{cases}$$

with $\alpha \triangleq r/N$, yields $\vec{V} = 1/\mathbb{E}[\tau] = 1/\sum_{i=1}^S \frac{\tilde{Q}(i)}{1-P(i)}$

Proof of (1st) EE expression: By Cramér's theorem:

$$E = -\sup_{\nu>0} \{\nu - \alpha \log M_{\tau}(\nu)\}$$

• $M_{ au}$ is the moment-generating function of au

• Chernoff's upper bound on P_e: Results in the above EE (achievable only)

Theorem [Domanovitz–Philosof–K. INFOCOM'22]:

• IV:
$$\vec{V} = 1/\sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}$$

• **EE, 1st expression:** for
$$\alpha < \vec{V}$$
: $E^{\text{prob}}(\widetilde{\mathbf{Q}}) = (1 - \alpha) \log x - \alpha \sum_{i=1}^{S} \tilde{Q}(i) \log \frac{1 - P(i)}{1 - P(i)x}$

where
$$x \in (1, 1/\max \mathbf{P})$$
 is the solution of $\sum_{i=1}^{S} \tilde{Q}(i) \cdot \{1 - P(i)\} \cdot \frac{1 - \alpha - P(i)x}{\{1 - P(i)x\}^2} = 0$

• **EE**, 2nd expression: for $\alpha < \vec{V} : E^{\text{prob}}(\widetilde{\mathbf{Q}}) = \min_{\mathbf{Q} \in \Delta_{S-1}} \{ E^{\text{fixed}}(\mathbf{Q}) + \alpha \mathbb{D}(\mathbf{Q} | | \widetilde{\mathbf{Q}}) \}$

where
$$\Delta_{S-1} \triangleq \{(x_1, \dots, x_S) | \sum_{i=1}^{S} x_i = 1, x_i \ge 0 \forall i\}$$
 is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.

Proof of 2nd **EE expression:**

$$P_{e}(N) = \Pr\left(\sum_{i=1}^{r} \tau_{i} > N\right) = \sum_{\mathbf{Q} \in \mathcal{Q}_{N}} \Pr\left(\sum_{i=1}^{r} \tau_{i} > N | \mathbf{Q}_{p} = \mathbf{Q}\right) \Pr\left(\mathbf{Q}_{p} = \mathbf{Q}\right)$$
$$\doteq \max_{\mathbf{Q} \in \mathcal{Q}_{N}} \exp\left\{-N \cdot E^{\text{fixed}}(\mathbf{Q})\right\} \cdot \exp\left\{-r \cdot \mathbb{D}(\mathbf{Q} | | \mathbf{\widetilde{Q}})\right\}$$
$$= \exp\left\{-N \cdot \min_{\mathbf{Q} \in \mathcal{Q}_{N}} \left\{E^{\text{fixed}}(\mathbf{Q}) + \alpha \mathbb{D}(\mathbf{Q} | | \mathbf{\widetilde{Q}})\right\}\right\}$$

• $Q_N \triangleq All \text{ partitions of } N \text{ balls into } S \text{ cells, divided by } N \text{ (the "type class")}_{82}$

Fixed Channels-Type Setting vs. Probabilistic Setting

