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Motivation: 5G 

• Huge increase in the number of connected devices

• Device-to-device (D2D) communications ⇒ relaying

• Cellular vehicle-to-everything (C-V2X): Platooning (URLLC)
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Motivation: 5G 

• Huge increase in the number of connected devices

• Device-to-device (D2D) communications ⇒ relaying

• Open Radio Access Network (O-RAN): shared cell, cascade mode
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Motivation: 5G 

• Huge increase in the number of connected devices

• Device-to-device (D2D) communications ⇒ relaying

Requires

• highly-reliable packet transmission

• Low latency

Fundamental limits?

• “First order”: Given delay, max # links a message can “reliably” traverse

• “Second order”: Error probability exponential decay rate
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Comparison of the Two Problems

Property Classical problem Dual problem

# links Single Multiple

# messages Multiple Single 
• Will be extended to multiple messages

6

Classical:

Dual:



Comparison of the Two Problems

Property Classical problem Dual problem

Fundamental limit 
(“First order”)

Capacity, 𝐶: ✓

• Max rate 𝑅 of 
# Messages
Time steps

• Error probability 𝑃𝑒
Time→∞

0

Information Velocity (IV), 𝑉: ?

• Max speed 𝛼 of 
# Links

Time steps

• Error probability 𝑃𝑒
Time→∞

0

Fundamental limit 
(“Second order”)

Error Exponent, 𝐸: @ 𝑅 < 𝐶 ⍻

𝐸 𝑅 = lim
Time→∞

−
1

Time
log𝑃𝑒

Error Exponent (EE), 𝐸: @ 𝛼 < 𝑉 ?

𝐸 𝛼 = lim
Time→∞

−
1

Time
log𝑃𝑒

7

Classical:
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Prior Art & Related Work

Single bit through two BSCs (bit-flip links):

• [Jog–Loh IT’20][Huleihel–Polyanskiy–Shayevitz ISIT’19]: Bounds on the EE

• [Ling–Scarlett ISIT’21]: EE = EE of single BSC

Finite number of bits through a cascade of BSCs (bit-flip links):

• 𝑝 probability of bit flip

• [Rajagopalan–Schulman ACM’94]: 𝑉 ≤ 1 − 2𝑝
• This result is immediate given the IV for erasure links that we will see in this talk

• [Ling–Scarlett, ArXiv’21]: 0 < 𝑉 ≤ 1 − 2𝑝 2

What about an online setup? 

• Causally, constantly, arriving messages 8



Prior Art & Related Work

Cascaded computation: Stream of packets through 𝒏 servers

• Infinite buffers

• Stochastic arrival and service curves

• Stochastic network calculus [Fidler–Rizk Comm surveys ’15]:

Assuming independent service times, mean E2E delay ∝ # servers  
⇓

𝑉 > 0
9
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Prior Art & Related Work

Cascaded computation: Stream of packets through 𝒏 servers

• Infinite buffers

• Stochastic arrival and service curves

• Stochastic network calculus [Fidler–Rizk Comm surveys ’15]:

Assuming independent service times, mean E2E delay ∝ # servers  
⇓

𝑉 > 0
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System Model

• Cascade of packet-erasure links

• IID Bernoulli erasures in each link

• Erasures are independent across different links (and times)

• Instantaneous perfect acknowledgment (ACK) feedback

• Stream of causally arriving packets (at random, periodically, …)

• In-order communications
11



System Model

• Source stream: Packet 𝑚 ∈ ℤ arrives at time 𝐴𝑚 ∈ ℤ

• Output of link 𝑖 serves as the input to node 𝑖 + 1

• At each time step: Packet sent in link 𝑖 is erased with probability 𝑝𝑖
• Packets are acknowledged upon arrival

• If packet erased, it is retransmitted until successful arrival at next node

• Departure process

• Packet 𝑚 ∈ ℤ arrives at final receiver at time 𝐵𝑚 ∈ ℤ
12



System Model

• Arrive-failure probability: 𝑃e 𝑁 ≜ sup𝑚∈ℤPr 𝐵𝑚 > 𝐴𝑚 + 𝑁

• Information velocity: 𝑉 ≜ sup 𝛼 > 0 𝑟 = 𝛼𝑁 , lim
𝑁→∞

𝑃𝑒 𝑁 = 0

• 𝑟 ∝ 𝑁 is the proper growth rate

• Error exponent: 𝐸 ≜ lim
𝑁→∞

−
1

𝑁
log 𝑃𝑒 𝑁 for 𝛼 < 𝑉
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Illustration

Event: 𝑡 = 0: Start

Next: 𝑡 = 1: Packet arrival (𝐴1 = 1)

14



Illustration

Event: 𝑡 = 1: Packet arrival (𝐴1 = 1)

Next: 𝑡 = 2: Packet arrival (𝐴2 = 2) & Link 1 erasure 
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Illustration

Event: 𝑡 = 2: Packet arrival (𝐴2 = 2) & Link 1 erasure 

Next: 𝑡 = 3: Success @ Link 1

16

12

12



Illustration

Event: 𝑡 = 3: Success @ Link 1

Next: 𝑡 = 4: Failure @ Link 1, success @ Link 2 (𝐵1 =4) , packet arrival (𝐴3 =4)
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Illustration

Event: 𝑡 = 4: Failure @ Link 1, success @ Link 2 (𝐵1 =4) , packet arrival (𝐴3 =4)

Next: 

18

23

23 1



Main Results 

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• Homogeneous links:  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

• IID Bernoulli arrival input process: IID packet arrivals with probability 𝜆 < 1 − 𝑝

⇒ IV in steady state: 𝑉 = 1 −
𝑝

1−𝜆

⇒ EE in steady state: for 𝛼 < 𝑉 ∶ 𝐸 = 𝔻 𝛼‖1 −
𝑝

1−𝜆

⇒ For 𝜆 ≥ 1 − 𝑝:  𝑉 = 0

Kullback–Leibler divergence: 𝔻 𝑞‖𝑠 ≜ 𝑞 log
𝑞

𝑠
+ 1 − 𝑞 log

1−𝑞

1−𝑠 19



Main Results 

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• Homogeneous links:  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

• Stationary ergodic input process of arrival rate 𝜆 < 1 − 𝑝

→ IV in steady state: 𝑉 ≤
=
1 −

𝑝

1−𝜆

→ EE in steady state: for 𝛼 < 𝑉 ∶ 𝐸 ≤ 𝔻 𝛼‖1 −
𝑝

1−𝜆

→ For 𝜆 ≥ 1 − 𝑝:  𝑉 = 0

𝔻 𝑞‖𝑠 ≜ 𝑞 log
𝑞

𝑠
+ 1 − 𝑞 log

1 − 𝑞

1 − 𝑠 20



Main Results 

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• Homogeneous links:  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

• Deterministic periodic input process: A packet arrives every 1/𝜆 time steps
• More generally, arrivals at times 𝑖 ⋅ 𝑎 for a fixed 𝑎 ∈ ℚ and all 𝑖 ∈ ℤ

→ IV in steady state: 𝑉 ≤
=
1 −

𝑝

1−𝜆

→ EE in steady state: for 𝛼 < 𝑉 ∶ 𝐸 ≤ 𝔻 𝛼‖1 −
𝑝

1−𝜆

→ For 𝜆 ≥ 1 − 𝑝:  𝑉 = 0
21



Main Results: Extensions

• Closed-form results for heterogeneous links as well

• Based on large deviation / method of types techniques

• Treatment can be extended to cyclostationary cycloergodic input processes

• Cycloergodic processes [Boyles–Gardner IT’83]

and more generally, to arrival process whose long time average → mean rate

22



Main Results: Proof Plan

• Single source packet

• Stream of packets for different arrival processes:

• IID Bernoulli arrival input process—by lifting the results for a single packet

• Stationary ergodic input process

• Periodic (deterministic) arrivals

23
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Single Packet, Single Link

• Assume the packet is available at the sender at time 𝐴 = 1

• Single link: 𝑟 = 1

• Arrive-failure probability: 

𝑃𝑒 𝑁 = 𝑝𝑁 = exp −𝑁 ∙ − log 𝑝

⇓

𝐸 = −log 𝑝

25



Single Packet, Homogeneous Links

Homogeneous links: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV: 𝑉 = 1 − 𝑝

• EE: for 𝛼 < 𝑉 ∶ 𝐸 = 𝔻 ȁ𝛼 1 − 𝑝 ≜ 𝛼 log
𝛼

1−𝑝
+ (1 − 𝛼) log

1−𝛼

𝑝

• 𝑃𝑒 over 𝑟 links across 𝑁 time steps is bounded as

1 − 𝑝 𝑁 exp − 𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝

8 𝑟 − 1 𝑁 − 𝑟 + 1
≤ 𝑃𝑒 𝑁 ≤ min

exp − 𝑁 − 1 ⋅ 𝔻 ቚ
𝑟

𝑁 − 1
1 − 𝑝 ,

1 − 𝑝 𝑁

2𝜋 𝑟 − 1 𝑁 − 𝑟 + 1
∙

exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝

1 − exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝

Corollary: For 𝑟 = 𝑜 𝑁 , 𝐸 = − log 𝑝 26



Single Packet, Homogeneous Links

Proof:

• 𝑡𝑖—time of arrival at node 𝑖 + 1 (over link 𝑖)

• 𝜏𝑖 ≜ 𝑡𝑖 − 𝑡𝑖−1—delay caused by link 𝑖

• Clearly, 𝜏1, 𝜏2, … , 𝜏𝑟 ∼ IID 𝒢ℯℴ 1 − 𝑝

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁

IV expression derivation: For 𝛼 ≜ 𝑟/𝑁

lim
𝑁→∞

𝑃𝑒 𝑁 = lim
𝑁→∞

Pr
1

𝑟


𝑖=1

𝑟

𝜏𝑖 >
𝑁

𝑟
= ቊ

0, 𝔼 𝜏 < 1/𝛼

1, 𝔼 𝜏 > 1/𝛼

• 𝔼 𝜏 =
1

1−𝑝
≷

1

𝛼
⇒ 𝑉 = 1 − 𝑝
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Single Packet, Homogeneous Links

EE expression derivation: By Chernoff’s upper bound on 𝑃𝑒: 

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 ≤ exp − sup
𝑠>0

𝑁 − 1 𝑠 − 𝛼 log𝑀𝜏 𝑠

= exp − 𝑁 − 1 ⋅ 𝔻 ቚ
𝑟

𝑁 − 1
1 − 𝑝

By Cramér’s theorem, the above achievable exponent is tight:

𝐸 = −sup
𝑠>0

𝑠 − 𝛼 log𝑀𝜏 𝑠 = 𝔻 𝛼‖1 − 𝑝

where 𝑀𝜏 𝑠 ≜ 𝔼 exp 𝑠𝜏 =
1−𝑝 exp 𝑠

1−𝑝 exp 𝑠
28



Single Packet, Homogeneous Links

Remarks:

• 1 − 𝑝 = 𝑉—expected # relays the message traverses per time step

• Can be used as alternative def. of IV over erasure links

• Original def. is akin to “almost lossless source coding” whereas

alternative def. is akin to “lossless (variable-length) source coding”

29



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

Property Classical problem Dual problem

# links Single Multiple

# messages Multiple Single 

Homogeneous 
erasure links

Capacity: 𝐶 = 1 − 𝑝 Information Velocity (IV) 𝑉 = 1 − 𝑝

30

Classical:

Dual:

• Observation for homogeneous links: 𝐶 = 𝑉

• Is it a coincidence? 



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

Property Classical problem Dual problem

# links Single Multiple

# messages Multiple Single 

Homogeneous 
erasure links

Capacity: 𝐶 = 1 − 𝑝 Information Velocity (IV) 𝑉 = 1 − 𝑝

31

Classical:

Dual:

• Observation for homogeneous links: 𝐶 = 𝑉

• Is it a coincidence? Of course not. ☺



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

32

Homogeneous erasure links:

• The two problems are in fact equivalent for erasure links

• More generally, for erasure links with ACK feedback:  

𝑚 messages over 𝑟 links ⇔𝑟 messages over 𝑚 links

Remark: For single packet transmission, the same results hold without feedback

Classical:

Dual:



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

33

Heterogeneous erasure links: The parallel “classical problem” is weird:

• Upon a successful packet-arrival, the erasure probability is chosen from 𝐏

• Erasure probability remains fixed until the next success

Alternative Problem: 𝑃 𝑖 is picked with probability 𝑄 𝑖

• The capacity of the alternative setting is higher (similar to waiting-time paradox)

Classical:

Dual:



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

34

What about other (non-erasure) links?

Classical:

Dual:



1 Packet over 𝑟 Link ⇔𝑟 Packets over 1 Link

35

What about other (non-erasure) links?

[Ling–Scarlett IT’22]: For a single bit transmitted over a cascade of homogeneous BSCs, 

𝑉 > 𝐶

for 𝑝 → 0.

Classical:

Dual:



Stream of Causally Arriving Packets



System Model: Reminder

• Cascade of packet-erasure links

• IID Bernoulli erasures in each link

• Erasures are independent across different links (and times)

• Instantaneous perfect acknowledgment (ACK) feedback

• Stream of causally arriving packets (at random, periodically, …)

• In-order communications
37



System Model: Reminder

• Source stream: Packet 𝑚 ∈ ℤ arrives at time 𝐴𝑚 ∈ ℤ

• Output of link 𝑖 serves as the input to node 𝑖 + 1

• At each time step: Packet sent in link 𝑖 is erased with probability 𝑝𝑖
• Packets are acknowledged upon arrival

• If packet erased, it is retransmitted until successful arrival at next node

• Departure process

• Packet 𝑚 ∈ ℤ arrives at final receiver at time 𝐵𝑚 ∈ ℤ
38



System Model: Reminder

• Arrive-failure probability: 𝑃e 𝑁 ≜ sup𝑚∈ℤPr 𝐵𝑚 > 𝐴𝑚 + 𝑁

• Information velocity: 𝑉 ≜ sup 𝛼 > 0 𝑟 = 𝛼𝑁 , lim
𝑁→∞

𝑃𝑒 𝑁 = 0

• 𝑟 ∝ 𝑁 is the proper growth rate

• Error exponent: 𝐸 ≜ lim
𝑁→∞

−
1

𝑁
log 𝑃𝑒 𝑁 for 𝛼 < 𝑉

39



System Model: Reminder

• We know how the first packet behaves

• The second packet will arrive slower (probabilistically)

• The third even slower

⋮

• Steady state—we will concentrate on this

40



System Model: Queuing Theory Perspective 

• Input stream: positive arrival (average) rate 𝜆 > 0

• Condition for stable steady-state system: 𝜆 < 1 − 𝑝𝑖 ∀𝑖 ∈ 1,… , 𝑟

• We will concentrate on homogeneous case: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

Arrival processes:

• IID Bernoulli arrivals—by lifting the results for a single packet

• Stationary ergodic process

• Periodic (deterministic) arrivals
41

by converging to IID Bernoulli arrivals…



System Model: Queuing Theory Perspective 

42

• Input stream: positive arrival (average) rate 𝜆 > 0

• Condition for stable steady-state system: 𝜆 < 1 − 𝑝𝑖 ∀𝑖 ∈ 1,… , 𝑟

• We will concentrate on homogeneous case: 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑟 ≜ 𝑝

Arrival processes:

• IID Bernoulli arrivals—by lifting the results for a single packet

• Stationary ergodic process

• Periodic (deterministic) arrivals
by converging to IID Bernoulli arrivals…



Burke’s Theorem
• IID ℬℯ𝓇 1 − 𝑝 service times ⇔ IID 𝒢ℯℴ 1 − 𝑝 interservice times

• Waiting time = queueing time + service time

Theorem [Hsu–Burke TCOM’76][Pujolle–Claude–Seret ’86][Desert–Daduna ’02]:

Assume a single queue in steady state with

• IID ℬℯ𝓇 𝜆 arrival times   (𝜆 < 1 − 𝑝)

• IID ℬℯ𝓇 1 − 𝑝 service times

⇒ IID ℬℯ𝓇 𝜆 departure times

⇒ # packets in queue at time 𝑡 is independent of departure process prior to time 𝑡

⇒ Waiting time of a packet~𝒢ℯℴ 1 −
𝑝

1−𝜆
⫫ departure process before packet’s departure

• Discrete-time analogue of classical results of [Burke ‘56][Reich ‘57][Jackson ‘54]

43



Reich’s Theorem for Tandem Queues
Theorem [Hui ’90][Prabhakar–Gallager TIT’03]:

Cascade of 𝑟 queues in steady state with 

• IID  ℬℯ𝓇 𝜆 arrival times   (𝜆 < 1 − 𝑝 ∀𝑖 ∈ 1,… 𝑟 )

• IID  ℬℯ𝓇 1 − 𝑝 service times at server 𝑖

• Service times are independent across servers (and within)

⇒ Waiting times of a packet are independent across queues 

⇒ Waiting time at queue 𝑖 ~ 𝒢ℯℴ 1 −
𝑝

1−𝜆

⇒ # packets in different queues are independent at a given time

• Discrete-time analogue of a classical result of [Reich ‘57]

44



Surprising Hidden Implication [Burke ’63]
Waiting time = queueing time + service time

𝑊1 = 𝑄1 + 𝑆1
𝑊2 = 𝑄2 + 𝑆2

• The waiting times are independent: 𝑊1 ⫫ 𝑊2

• The service times are independent: 𝑆1 ⫫ 𝑆2

• Service times are independent of respective queueing times: 𝑆1 ⫫ 𝑄1, 𝑆2 ⫫ 𝑄2

• But the queueing times are dependent! 𝑄1 ∦ 𝑄2

• Proof: By direct calculation, Pr 𝑄2 = 0 𝑄1 = 0 > Pr 𝑄2 = 0 . Alternatively, 

• 𝑆2 ⫫ 𝑄1, 𝑄2, 𝑆1 and 𝑄2 + 𝑆2 = 𝑊2 ⫫ 𝑊1 ⇒ 𝑄2 ⫫ 𝑊1

• 𝑄2 ∦ 𝑆1 since for 𝑆1 → ∞, 𝑄2 → 0

• 𝑄2 ⫫ 𝑊1 = 𝑆1 + 𝑄1 𝑊1

𝑄1 𝑆1

𝑄2



Cascade of 𝑟 Independent Links, IID Bernoulli Arrivals 

Corollary [Domanovitz–Philosof–K. INFOCOM’22]: 

Cascade of 𝑟 queues in steady state with 

• IID  ℬℯ𝓇 𝜆 arrival times   (𝜆 < 1 − 𝑝)

• IID  ℬℯ𝓇 1 − 𝑝 service times at server 𝑖

• Service times are independent across servers (and within)

⇒ Homogenous links: Replace 𝑝 with 
𝑝

1−𝜆
in single-packet expressions:

• IV: 𝑉 = 1 −
𝑝

1−𝜆

• EE: for 𝛼 < 𝑉 ∶ 𝐸 = 𝔻 𝛼‖1 −
𝑝

1−𝜆

Heterogeneous links: Replace 𝑝𝑖 with  
𝑝𝑖

1−𝜆
in single-packet expressions 

46



Stationary Ergodic Arrival Process

• Assume now a stationary ergodic arrival process of rate 𝜆

Theorem [Mountford–Prabhakar ‘95]:

• Homogeneous queues

For 𝑟 → ∞, the departure process converges to IID ℬℯ𝓇 𝜆 arrivals

• Proof uses the coupling technique of [Anantharam ‘93]

47



Stationary Ergodic Arrival Process: Illustration

Event: Initial state of the system

Next: Service @ Server 1

48

Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 1

Next: Recoloring @ Server 2
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Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Recoloring @ Server 2

Next: Service @ Server 2

50

Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 2

Next: Service @ Server 1
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Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 1

Next: Recoloring @ Server 2 
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Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Recoloring @ Server 2

Next: Service @ Server 1
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Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 1

Next: Merge: Red + Blue = Yellow

54

Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Illustration

Event: Merge: Red + Blue = Yellow
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Ergodic process 2
of rate 𝜆

Ergodic process 1
of rate 𝜆



Stationary Ergodic Arrival Process: Proof Idea

For any two ergodic input processes of the same rate  𝜆

• Fraction of yellows increases with each queue

• Fraction of yellows → 1 for 𝑟 → ∞

⇒ Output processes converge to the same process

• Take one the input processes to have IID ℬℯ𝓇 𝜆 arrivals 

⇒ By Burke’s theorem the output of Server 1 has also IID ℬℯ𝓇 𝜆 arrivals

⇒ Holds also for all subsequent servers 

⇒ Any ergodic input process converges to IID ℬℯ𝓇 𝜆 arrivals

56



Stationary Ergodic Arrival Process

• Is that enough to derive IV and EE results?

57



Stationary Ergodic Arrival Process

• Is it enough to derive IV and EE results? No 

• It suffices to prove impossibility (converse) results

• For achievability: Requires bounding the effect of red/blue packets 

or a robustness/continuity result

58



Cascade of 𝑟 Independent Links, Ergodic Arrival Process

Theorem [Domanovitz–Philosof–K.]:

Cascade of 𝑟 queues in steady state with 

• Ergodic arrival times of rate 𝜆 < 1 − 𝑝

• IID  ℬℯ𝓇 1 − 𝑝 service times at server 𝑖

• Service times are independent across servers (and within)

• Homogenous links: Replace 𝑝 with 
𝑝

1−𝜆
in single-packet expressions

• IV: 𝑉 ≤
=
1 −

𝑝

1−𝜆
(same as for IID Bernoulli arrivals)

• EE: for 𝛼 < 𝑉 ∶ 𝐸 ≤ 𝔻 𝛼‖1 −
𝑝

1−𝜆
(upper bounded by EE of IID Bernoulli arrivals)

• Proof based on the technique of [Mountford–Prabhakar ‘95]

Heterogeneous links: Similar results apply.
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Periodic (Deterministic) Arrivals

• Assume now periodic arrivals: A packet arrives every 1/𝜆 time steps

Extension of last theorem [Domanovitz–Philosof–K.]:

• Homogeneous/heterogeneous queues

⇒ For 𝑟 → ∞, the departure process converges to IID ℬℯ𝓇 𝜆 arrivals

Remark: Can be extended to cyclostationary cycloergodic processes

• Cycloergodic processes [Boyles–Gardner IT’83].

• More generally, extends to any input process whose long-time average 
converges to a deterministic value a.s.
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Cascade of 𝑟 Independent Links, Periodic Arrivals

Corollary [Domanovitz–Philosof–K.]: 

• Homogenous links: Replace 𝑝 with 
𝑝

1−𝜆
in single-packet expressions

• IV: 𝑉 ≤
=
1 −

𝑝

1−𝜆
(same as for IID geometric interarrivals)

• EE: for 𝛼 < 𝑉 ∶ 𝐸 ≤
=
𝔻 𝛼‖1 −

𝑝

1−𝜆
(same as for IID geometric interarrivals)

• Heterogeneous links: Replace 𝑝𝑖 with  
𝑝𝑖

1−𝜆
in single-packet expressions 

(same as for IID geometric interarrivals)
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Numerical Results: IV versus Arrival Rate

• Homogeneous links with 𝑝 = 0.001, 0.01, 0.1
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Numerical results: Arrive-Failure Probability

• 𝑟 = 20, 100, 200, 1000 relays• 𝛼 = 0.96

63

• Homogeneous links with 𝑝 = 0.01

• 𝜆 = 0.5

• 𝑉 = 1 − 𝑝 = 0.99



Numerical Results: Different Arrival Processes

64

• 𝜆 = 0.5, 𝐏 = (0.01, 0.1), 𝐐 = 0.5, 0.5

• Gilbert–Elliott model: Two-state Markov model

• @Good state—packet arrives with probability 𝜖

• @Bad state—packet arrives with probability 1



Extensions

• Heterogeneous links (@backup slides & paper)

• Several servers at each queue

• 2D regular grids

65

[Makur–Mossel–Polyanskiy TIT ‘22]



Discussion & Future Research

• We assumed feedback ⇒ What is the IV without/with delayed feedback?
• We know the answer for a single packet since feedback is not needed

• We studied the behavior of a single/first packet and in stead state

• What is the IV for intermediate (“transient”) packets? 

• All the results are easily adaptable to the continuous-time setting
• In fact the queueing theory results were originally derived for this setting

• “Poisson IV”

• We assumed in-order transmission of all packets
• “Slow” packets can be thrown away to improve overall performance

• “Anytime Anywhere Reliability”—important if data pertain to control

• Other channels with/without feedback & more general networks 66
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Single Packet, Homogeneous Links
Bounds on 𝑃𝑒 via binomial coefficient bounds: 

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 = 

𝑗=𝑁+1

∞
𝑗 − 1

𝑟 − 1
1 − 𝑝 𝑟𝑝𝑟−𝑗

Using the entropy bounds on binomial coeff. [Ash’s book]:         𝐻𝑏 𝑞 ≜ −𝑞 log 𝑞 − 𝑞 − 1 log 1 − 𝑞

1

2
exp 𝑛𝐻𝑏

𝑘

𝑛

𝑛

2𝑘 𝑛 − 𝑘
≤

𝑛

𝑘
≤

1

𝜋
exp 𝑛𝐻𝑏

𝑘

𝑛

𝑛

2𝑘 𝑛 − 𝑘
,

yields

𝑃𝑒 𝑁 ≤ 

ℓ=𝑁

∞ 1 − 𝑝 ℓ exp − ℓ ⋅ 𝔻 ฬ
𝑟 − 1
ℓ

1 − 𝑝

2𝜋 𝑟 − 1 ℓ + 1 − 𝑟
≤ 

ℓ=𝑁

∞ 1 − 𝑝 𝑁 exp − ℓ ⋅ 𝔻 ฬ
𝑟 − 1
𝑁

1 − 𝑝

2𝜋 𝑟 − 1 𝑁 + 1 − 𝑟

=
1 − 𝑝 𝑁

2𝜋 𝑟 − 1 𝑁 − 𝑟 + 1
∙

exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝

1 − exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝
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Single Packet, Homogeneous Links
Bounds on 𝑃𝑒 via binomial coefficient bounds: 

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 = 

𝑗=𝑁+1

∞
𝑗 − 1

𝑟 − 1
1 − 𝑝 𝑟𝑝𝑟−𝑗

Using the entropy bounds on binomial coeff. [Ash’s book]:         𝐻𝑏 𝑞 ≜ −𝑞 log 𝑞 − 𝑞 − 1 log 1 − 𝑞

1

2
exp 𝑛𝐻𝑏

𝑘

𝑛

𝑛

2𝑘 𝑛 − 𝑘
≤

𝑛

𝑘
≤

1

𝜋
exp 𝑛𝐻𝑏

𝑘

𝑛

𝑛

2𝑘 𝑛 − 𝑘
,

yields

𝑃𝑒 𝑁 ≥ 

ℓ=𝑁

∞ 1 − 𝑝 ℓ exp − ℓ ⋅ 𝔻 ฬ
𝑟 − 1
𝑁

1 − 𝑝

2 × 4 𝑟 − 1 ℓ + 1 − 𝑟
≥

1 − 𝑝 𝑁 exp − 𝑁 ⋅ 𝔻 ฬ
𝑟 − 1
𝑁

1 − 𝑝

8 𝑟 − 1 𝑁 + 1 − 𝑟

=
1 − 𝑝 𝑁

2𝜋 𝑟 − 1 𝑁 − 𝑟 + 1
∙

exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝

1 − exp −𝑁 ⋅ 𝔻
𝑟 − 1
𝑁

‖1 − 𝑝
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Single Packet, Heterogeneous Links

Heterogeneous links: the erasure probabilities of different links—𝑝 1 , 𝑝 2 , …𝑝 𝑟 —may differ

• We will consider two settings for the erasure probabilities:

1. Fixed channels-type: Fraction (“type”) 𝑄(𝑖) of all 𝑟 channels have erasure probability 𝑃 𝑖

• Assume only 𝑆 < ∞ possible channel erasure probabilities (can be lifted): 

𝐐 ≜ 𝑄 1 ⋯ 𝑄 𝑆 , 𝐏 ≜ 𝑃 1 ⋯ 𝑃 𝑆

Remark: Order of 𝑝 1 , 𝑝 2 , …𝑝 𝑟 given a certain type 𝐐 doesn’t matter

2. Probabilistic setting: 𝑝 1 , 𝑝 2 ,…𝑝 𝑟 ∈ 𝐏 ~ IID according to ෩𝐐
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Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction (“type”) 𝑄(𝑖) of all 𝑟 channels have erasure probability 𝑃 𝑖

𝐐 ≜ 𝑄 1 ⋯ 𝑄 𝑆 , 𝐏 ≜ 𝑃 1 ⋯ 𝑃 𝑆

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV: 𝑉 = 1/σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖

• EE, 1st expression: for 𝛼 < 𝑉 ∶ 𝐸fixed 𝐐 = 1 − 𝛼 log 𝑥 + 𝛼σ𝑖=1
𝑆 𝑄 𝑖 log

1−𝑃 𝑖 𝑥

1−𝑃(𝑖)

where 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖 𝑥
=

1

𝛼

Corollary: For 𝑟 = 𝑜 𝑁 , EE equals that of worst link: 𝐸 = − logmax𝐏.
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of IV characterization: Define

• 𝛼 ≜ 𝑟/𝑁

• 𝑅 𝑖 ≜ # links with erasure probability 𝑃 𝑖 ⇔ 𝑄 𝑖 ≡ 𝑅 𝑖 /𝑟

lim
𝑁→∞

𝑃𝑒 𝑁 = lim
𝑁→∞

Pr
1

𝑟


ℓ=1

𝑟

𝜏ℓ >
𝑁

𝑟
= lim

𝑁→∞
Pr 

𝑖=1

𝑆
𝑅 𝑖

𝑟
⋅
1

𝑅 𝑖


ℓ:𝑝ℓ=𝑃 𝑖

𝜏ℓ >
𝑁

𝑟

=

0, 

𝑖=1

𝑆

𝑄 𝑖
1

1 − 𝑃 𝑖
< 1/𝛼

1, 

𝑖=1

𝑆

𝑄 𝑖
1

1 − 𝑃 𝑖
> 1/𝛼

⇒ 𝑉 =
1

σ𝑖=1
𝑆 𝑄 𝑖

1 − 𝑃 𝑖
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of (1st) EE expression: By the Gärtner–Ellis theorem 

𝐸fixed = −sup
𝜈>0

𝜈 − 𝛼

𝑖=1

𝑆

𝑄 𝑖 log𝑀𝑖 𝜈 = 1 − 𝛼 log 𝑥 + 𝛼

𝑖=1

𝑆

𝑄 𝑖 log
1 − 𝑃 𝑖 𝑥

1 − 𝑃(𝑖)

where 

• 𝑀𝑖 𝜈 =
1−𝑃 𝑖 exp 𝜈

1−𝑃 𝑖 exp 𝜈
is the moment-generating function of 𝒢ℯℴ 1 − 𝑃 𝑖

• 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖 𝑥
=

1

𝛼

Chernoff’s upper bound on 𝑃𝑒: Results in the above EE (achievable only)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV: 𝑉 = 1/σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖

• EE, 1st expression: for 𝛼 < 𝑉 ∶ 𝐸fixed 𝐐 = 1 − 𝛼 log 𝑥 + 𝛼σ𝑖=1
𝑆 𝑄 𝑖 log

1−𝑃 𝑖 𝑥

1−𝑃(𝑖)

where 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖 𝑥
=

1

𝛼

• EE, 2nd expression: for 𝛼 < 𝑉 ∶ 𝐸fixed 𝐐 = min
𝑈∈Δ𝑆−1

𝑈 𝑖 ≥
𝛼𝑄 𝑖

1−𝑃 𝑖
∀𝑖∈ 𝑆

σ𝑖=1
𝑆 𝑈 𝑖 𝔻 ฬ

𝛼𝑄 𝑖

𝑈 𝑖
1 − 𝑃 𝑖

where Δ𝑆−1 ≜ 𝑥1, … , 𝑥𝑆 σ𝑖=1
𝑆 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 ∀𝑖 is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2nd EE expression:

• Idea: For each 𝑃 𝑖 and 𝑄 𝑖 , look at corresponding fraction 𝑈 𝑖 of delay steps  

• Upper bound: Run over all possible 𝐔

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 ≤ 

𝑈∈𝒬𝑁

Pr 

ℓ:𝑝ℓ=𝑃 𝑖

𝜏ℓ ≥ 𝑁𝑈 𝑖 ∀𝑖 ∈ 𝑆

≤ 

𝑈∈𝒬𝑁

ෑ

𝑖=1

𝑆

Pr 

ℓ:𝑝ℓ=𝑃 𝑖

𝜏ℓ ≥ 𝑁𝑈 𝑖

≤
∙
𝑁 + 1 𝑆 exp − min

𝑈∈Δ𝑆−1

𝑈 𝑖 ≥
𝛼𝑄 𝑖

1−𝑃 𝑖
∀𝑖∈ 𝑆

σ𝑖=1
𝑆 𝑈 𝑖 𝔻 ฬ

𝛼𝑄 𝑖

𝑈 𝑖
1 − 𝑃 𝑖

• 𝒬𝑁 ≜ All partitions of 𝑁 balls into 𝑆 cells, divided by 𝑁 (the “type class”)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2nd EE expression:

• Idea: For each 𝑃 𝑖 and 𝑄 𝑖 , look at corresponding fraction 𝑈 𝑖 of delay steps  

• Lower bound: Take “worst” possible 𝐔

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 ≥ max
𝑈∈𝒬𝑁

Pr 

ℓ:𝑝ℓ=𝑃 𝑖

𝜏ℓ > 𝑁𝑈 𝑖 ∀𝑖 ∈ 𝑆

≥ෑ

𝑖=1

𝑆

Pr 

ℓ:𝑝ℓ=𝑃 𝑖

𝜏ℓ > 𝑁𝑈 𝑖

≥
∙
exp − min

𝑈∈Δ𝑆−1

𝑈 𝑖 ≥
𝛼𝑄 𝑖
1−𝑃 𝑖

∀𝑖∈ 𝑆



𝑖=1

𝑆

𝑈 𝑖 𝔻 ቤ
𝛼𝑄 𝑖
𝑈 𝑖

1 − 𝑃 𝑖

• 𝒬𝑁 ≜ All partitions of 𝑁 balls into 𝑆 cells, divided by 𝑁 (the “type class”)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction (“type”) 𝑄(𝑖) of all 𝑟 channels have erasure probability 𝑃 𝑖

𝐐 ≜ 𝑄 1 ⋯ 𝑄 𝑆 , 𝐏 ≜ 𝑃 1 ⋯ 𝑃 𝑆

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV: 𝑉 = 1/σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖

• EE, 1st expression: for 𝛼 < 𝑉 ∶ 𝐸fixed 𝐐 = 1 − 𝛼 log 𝑥 + 𝛼σ𝑖=1
𝑆 𝑄 𝑖 log

1−𝑃 𝑖 𝑥

1−𝑃(𝑖)

where 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 𝑄 𝑖

1−𝑃 𝑖 𝑥
=

1

𝛼

Corollary: For 𝑟 = 𝑜 𝑁 , EE equals that of worst link: 𝐸 = − logmax𝐏.
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Single Packet, Heterogeneous Links: Probabilistic Setting

2. Probabilistic setting:

𝑝 1 , 𝑝 2 ,… 𝑝 𝑟 ∈ 𝐏 ~ IID according to ෩𝐐

෩𝐐 ≜ ෨𝑄 1 ⋯ ෨𝑄 𝑆 , 𝐏 ≜ 𝑃 1 ⋯ 𝑃 𝑆

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV: 𝑉 = 1/σ𝑖=1
𝑆 ෨𝑄 𝑖

1−𝑃 𝑖
(as in fixed-channels type setting)

• EE, 1st expression: for 𝛼 < 𝑉 ∶ 𝐸prob ෩𝐐 = 1 − 𝛼 log 𝑥 − 𝛼σ𝑖=1
𝑆 ෨𝑄 𝑖 log

1−𝑃 𝑖

1−𝑃 𝑖 𝑥

where 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 ෨𝑄 𝑖 ⋅ 1 − 𝑃 𝑖 ⋅

1−𝛼−𝑃 𝑖 𝑥

1−𝑃 𝑖 𝑥 2 = 0

Corollary: For 𝑟 = 𝑜 𝑁 , EE equals that of worst link: 𝐸 = − logmax𝐏. 78



Single Packet, Heterogeneous Links: Probabilistic Setting

• Each 𝜏ℓ is now a mixture of geometric distributions:  

Pr 𝜏 = ℓ =

𝑖=1

𝑆

෨𝑄 𝑖 ⋅ 𝑃 𝑖 ℓ−1 ⋅ 1 − 𝑃 𝑖 , 𝔼 𝜏 =

𝑖=1

𝑆
෨𝑄 𝑖

1 − 𝑃 𝑖

• 𝜏ℓ are IID

Proof of IV characterization: Repeat proof steps for homogeneous links:

lim
𝑁→∞

𝑃𝑒 𝑁 = lim
𝑁→∞

Pr
1

𝑟


𝑖=1

𝑟

𝜏𝑖 >
𝑁

𝑟
= ቊ

0, 𝔼 𝜏 < 1/𝛼

1, 𝔼 𝜏 > 1/𝛼

with 𝛼 ≜ 𝑟/𝑁, yields 𝑉 = 1/𝔼 𝜏 = 1/σ𝑖=1
𝑆 ෨𝑄 𝑖

1−𝑃 𝑖 79



Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of (1st) EE expression: By Cramér’s theorem:

𝐸 = −sup
𝜈>0

𝜈 − 𝛼 log𝑀𝜏 𝜈

• 𝑀𝜏 is the moment-generating function of 𝜏

• Chernoff’s upper bound on 𝑃𝑒: Results in the above EE (achievable only)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz–Philosof–K. INFOCOM’22]:

• IV:   𝑉 = 1/σ𝑖=1
𝑆 ෨𝑄 𝑖

1−𝑃 𝑖

• EE, 1st expression: for 𝛼 < 𝑉 ∶ 𝐸prob ෩𝐐 = 1 − 𝛼 log 𝑥 − 𝛼σ𝑖=1
𝑆 ෨𝑄 𝑖 log

1−𝑃 𝑖

1−𝑃 𝑖 𝑥

where 𝑥 ∈ 1,1/max𝐏 is the solution of σ𝑖=1
𝑆 ෨𝑄 𝑖 ⋅ 1 − 𝑃 𝑖 ⋅

1−𝛼−𝑃 𝑖 𝑥

1−𝑃 𝑖 𝑥 2 = 0

• EE, 2nd expression: for 𝛼 < 𝑉 ∶ 𝐸prob ෩𝐐 = min
𝐐∈Δ𝑆−1

𝐸fixed 𝐐 + 𝛼𝔻 𝐐ȁȁ෩𝐐

where Δ𝑆−1 ≜ 𝑥1, … , 𝑥𝑆 σ𝑖=1
𝑆 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 ∀𝑖 is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2nd EE expression:

𝑃𝑒 𝑁 = Pr 

𝑖=1

𝑟

𝜏𝑖 > 𝑁 = 

𝐐∈𝒬𝑁

Pr σ𝑖=1
𝑟 𝜏𝑖 > 𝑁 𝐐𝑝 = 𝐐 Pr 𝐐𝑝 = 𝐐

≐ max
𝐐∈𝒬𝑁

exp −𝑁 ⋅ 𝐸fixed 𝐐 ⋅ exp −𝑟 ⋅ 𝔻 𝐐ȁȁ෩𝐐

= exp −𝑁 ⋅ min
𝐐∈𝒬𝑁

𝐸fixed 𝐐 + 𝛼𝔻 𝐐ȁȁ෩𝐐

• 𝒬𝑁 ≜ All partitions of 𝑁 balls into 𝑆 cells, divided by 𝑁 (the “type class”)
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Fixed Channels-Type Setting vs. Probabilistic Setting

𝐐 = ෩𝐐 = 0.5 0.2 0.3 , 𝐏 = 0.2 0.5 0.7

• 𝑉 = 0.5
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