类
 The Information Velocity of Packet-Erasure Links

Anatoly Khina, Tel Aviv University

Joint work with
Elad Domanovitz, Tel Aviv University
Tal Philosof, Samsung Research

IPG Seminar, EPFL
April 5, 2023

Outline

- Motivation \& introduction
- Model: information velocity (IV) \& error exponent (EE)
- Main results
- Derivation: IV \& EE of a single packet
- Derivation: IV \& EE of a stream of packets
- Numerical results
- Summary \& outlook

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications \Rightarrow relaying
- Cellular vehicle-to-everything (C-V2X): Platooning (URLLC)

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications \Rightarrow relaying
- Open Radio Access Network (O-RAN): shared cell, cascade mode

Cascade mode

Cascade mode

Motivation: 5G

- Huge increase in the number of connected devices
- Device-to-device (D2D) communications \Rightarrow relaying

Requires

- highly-reliable packet transmission
- Low latency

Fundamental limits?

- "First order": Given delay, max \# links a message can "reliably" traverse
- "Second order": Error probability exponential decay rate

Comparison of the Two Problems

Property	Classical problem	Dual problem
\# links	Single	Multiple
\# messages	Multiple	Single • Will be extended to multiple messages

Comparison of the Two Problems

Prior Art \& Related Work

Single bit through two BSCs (bit-flip links):

- [Jog-Loh IT'20][Huleihel-Polyanskiy-Shayevitz ISIT'19]: Bounds on the EE

- [Ling-Scarlett ISIT'21]: EE = EE of single BSC

Finite number of bits through a cascade of BSCs (bit-flip links):

- p probability of bit flip
- [Rajagopalan-Schulman ACM'94]: $\vec{V} \leq 1-2 p$
- This result is immediate given the IV for erasure links that we will see in this talk
- [Ling-Scarlett, ArXiv'21]: $0<\vec{V} \leq(1-2 p)^{2}$

What about an online setup?

- Causally, constantly, arriving messages

Prior Art \& Related Work

Cascaded computation: Stream of packets through n servers

- Infinite buffers
- Stochastic arrival and service curves
- Stochastic network calculus [Fidler-Rizk Comm surveys '15]:

Assuming independent service times, mean E2E delay \propto \# servers \Downarrow

$$
\vec{V}>0
$$

Prior Art \& Related Work

$X_{3} \quad X_{2},-\cdots-\cdots$ Queue 1

Cascaded computation: Stream of packets through n servers

- Infinite buffers
- Stochastic arrival and service curves
- Stochastic network calculus [Fidler-Rizk Comm surveys '15]:

Assuming independent service times, mean E2E delay \propto \# servers \Downarrow

$$
\vec{V}>0
$$

System Model

- Cascade of packet-erasure links
- IID Bernoulli erasures in each link
- Erasures are independent across different links (and times)
- Instantaneous perfect acknowledgment (ACK) feedback
- Stream of causally arriving packets (at random, periodically, ...)
- In-order communications

System Model

- Source stream: Packet $m \in \mathbb{Z}$ arrives at time $A_{m} \in \mathbb{Z}$
- Output of link i serves as the input to node $i+1$
- At each time step: Packet sent in link i is erased with probability p_{i}
- Packets are acknowledged upon arrival
- If packet erased, it is retransmitted until successful arrival at next node
- Departure process
- Packet $m \in \mathbb{Z}$ arrives at final receiver at time $B_{m} \in \mathbb{Z}$

System Model

- Arrive-failure probability: $P_{\mathrm{e}}(N) \triangleq \sup _{m \in \mathbb{Z}} \operatorname{Pr}\left(B_{m}>A_{m}+N\right)$
- Information velocity: $\vec{V} \triangleq \sup \left\{\alpha>0 \mid r=\lceil\alpha N\rceil, \lim _{N \rightarrow \infty} P_{e}(N)=0\right\}$
- $r \propto N$ is the proper growth rate
- Error exponent: $E \triangleq \lim _{N \rightarrow \infty}-\frac{1}{N} \log P_{e}(N) \quad$ for $\alpha<\vec{V}$

Illustration

$$
\begin{array}{ll}
\text { Event: } & \\
\text { Next: } & \\
\text { N }=1 \text { : Sacket arrival }\left(A_{1}=1\right)
\end{array}
$$

Queue 1

Illustration

Event:	$t=1:$ Packet arrival $\left(A_{1}=1\right)$
Next:	$t=2:$ Packet arrival $\left(A_{2}=2\right)$ \& Link 1 erasure

Queue 1

Illustration

Event: $\quad t=2$: Packet arrival $\left(A_{2}=2\right)$ \& Link 1 erasure
 Next: $\quad t=3$: Success @ Link 1

Queue 1

Illustration

Event: $\quad t=3$: Success @ Link 1

Next: $\quad t=4$: Failure @ Link 1, success @ Link $2\left(B_{1}=4\right)$, packet arrival $\left(A_{3}=4\right)$
Queue 1

Illustration

Event: $\quad t=4$: Failure @ Link 1, success @ Link $2\left(B_{1}=4\right)$, packet arrival $\left(A_{3}=4\right)$

Next:

Queue 1

Main Results

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- Homogeneous links: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$
- IID Bernoulli arrival input process: IID packet arrivals with probability $\lambda<1-p$
\Rightarrow IV in steady state: $\vec{V}=1-\frac{p}{1-\lambda}$
$\Rightarrow \mathrm{EE}$ in steady state: for $\alpha<\vec{V}: E=\mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$
\Rightarrow For $\lambda \geq 1-p: \vec{V}=0$
Kullback-Leibler divergence: $\mathbb{D}(q \| s) \triangleq q \log \frac{q}{s}+(1-q) \log \frac{1-q}{1-s}$

Main Results

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- Homogeneous links: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$
- Stationary ergodic input process of arrival rate $\lambda<1-p$
\rightarrow IV in steady state: $\vec{V} \leq 1-\frac{p}{1-\lambda}$
$\rightarrow \mathrm{EE}$ in steady state: for $\alpha<\vec{V}: E \leq \mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$
\rightarrow For $\lambda \geq 1-p: \vec{V}=0$

Main Results

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- Homogeneous links: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$
- Deterministic periodic input process: A packet arrives every $1 / \lambda$ time steps
- More generally, arrivals at times $\lfloor i \cdot a\rfloor$ for a fixed $a \in \mathbb{Q}$ and all $i \in \mathbb{Z}$
\rightarrow IV in steady state: $\vec{V} \leq 1-\frac{p}{1-\lambda}$
$\rightarrow \mathrm{EE}$ in steady state: for $\alpha<\vec{V}: E \leq \mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$
\rightarrow For $\lambda \geq 1-p: \vec{V}=0$

Main Results: Extensions

- Closed-form results for heterogeneous links as well
- Based on large deviation / method of types techniques
- Treatment can be extended to cyclostationary cycloergodic input processes
- Cycloergodic processes [Boyles-Gardner IT’83]
and more generally, to arrival process whose long time average \rightarrow mean rate

Main Results: Proof Plan

- Single source packet
- Stream of packets for different arrival processes:
- IID Bernoulli arrival input process-by lifting the results for a single packet
- Stationary ergodic input process
- Periodic (deterministic) arrivals

Single Packet

Single Packet, Single Link

- Assume the packet is available at the sender at time $A=1$
- Single link: $r=1$
- Arrive-failure probability:

$$
\begin{gathered}
P_{e}(N)=p^{N}=\exp \{-N \cdot(-\log p)\} \\
\Downarrow \\
E=-\log p
\end{gathered}
$$

Single Packet, Homogeneous Links

A single packet
Causally-decoded
Homogeneous links: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$
Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- $\mathrm{IV}: \vec{V}=1-p$
- EE: for $\alpha<\vec{V}: E=\mathbb{D}(\alpha \| 1-p) \triangleq \alpha \log \frac{\alpha}{1-p}+(1-\alpha) \log \frac{1-\alpha}{p}$
- P_{e} over r links across N time steps is bounded as
$\frac{(1-p) \sqrt{N} \exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \| 1-p\right)\right\}}{\sqrt{8(r-1)(N-r+1)}} \leq P_{e}(N) \leq \min \left\{\begin{array}{c}\exp \left\{-(N-1) \cdot \mathbb{D}\left(\frac{r}{N-1} \| 1-p\right)\right\}, \\ \left.\frac{(1-p) \sqrt{N}}{\sqrt{2 \pi(r-1)(N-r+1)}} \cdot \frac{\exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \| 1-p\right)\right\}}{1-\exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \| 1-p\right)\right\}}\right\}\end{array}\right\}$
Corollary: For $r=o(N), E=-\log p$

Single Packet, Homogeneous Links

Proof:

- t_{i}-time of arrival at node $i+1$ (over link i)
- $\tau_{i} \triangleq t_{i}-t_{i-1}$-delay caused by link i
- Clearly, $\tau_{1}, \tau_{2}, \ldots, \tau_{r} \sim \operatorname{IID} \operatorname{Ge\sigma }(1-p)$

$$
P_{e}(N)=\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right)
$$

IV expression derivation: For $\alpha \triangleq r / N$

$$
\lim _{N \rightarrow \infty} P_{e}(N)=\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\frac{1}{r} \sum_{i=1}^{r} \tau_{i}>\frac{N}{r}\right)= \begin{cases}0, & \mathbb{E}[\tau]<1 / \alpha \\ 1, & \mathbb{E}[\tau]>1 / \alpha\end{cases}
$$

- $\mathbb{E}[\tau]=\frac{1}{1-p} \gtrless \frac{1}{\alpha} \Rightarrow \vec{V}=1-p$

Single Packet, Homogeneous Links

EE expression derivation: By Chernoff's upper bound on P_{e} :

$$
\begin{aligned}
P_{e}(N) & =\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right) \leq \exp \left\{-\sup _{s>0}\left\{(N-1) s-\alpha \log M_{\tau}(s)\right\}\right\} \\
& =\exp \left\{-(N-1) \cdot \mathbb{D}\left(\frac{r}{N-1}| | 1-p\right)\right\}
\end{aligned}
$$

By Cramér's theorem, the above achievable exponent is tight:

$$
E=-\sup _{s>0}\left\{s-\alpha \log M_{\tau}(s)\right\}=\mathbb{D}(\alpha \| 1-p)
$$

where $M_{\tau}(s) \triangleq \mathbb{E}[\exp \{s \tau\}]=\frac{(1-p) \exp \{s\}}{1-p \exp \{s\}}$

Single Packet, Homogeneous Links

Remarks:

- $1-p=\vec{V}$-expected $\#$ relays the message traverses per time step
- Can be used as alternative def. of IV over erasure links
- Original def. is akin to "almost lossless source coding" whereas alternative def. is akin to "lossless (variable-length) source coding"

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

Property	Classical problem	Dual problem
\# links	Single	Multiple
\# messages	Multiple	Single
Homogeneous erasure links	Capacity: $C=1-p$	Information Velocity (IV) $\vec{V}=1-p$

- Observation for homogeneous links: $C=\vec{V}$
- Is it a coincidence?

Dual:

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

Property	Classical problem	Dual problem
\# links	Single	Multiple
\# messages	Multiple	Single
Homogeneous erasure links	Capacity: $C=1-p$	Information Velocity (IV) $\vec{V}=1-p$

- Observation for homogeneous links: $C=\vec{V}$
- Is it a coincidence? Of course not. ()

Dual:

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

A single packet
Homogeneous erasure links:

- The two problems are in fact equivalent for erasure links
- More generally, for erasure links with ACK feedback:
m messages over r links $\Leftrightarrow r$ messages over m links

Remark: For single packet transmission, the same results hold without feedback

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

A single packet
Heterogeneous erasure links: The parallel "classical problem" is weird:

- Upon a successful packet-arrival, the erasure probability is chosen from \mathbf{P}
- Erasure probability remains fixed until the next success

Alternative Problem: $P(i)$ is picked with probability $Q(i)$

- The capacity of the alternative setting is higher (similar to waiting-time paradox)

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

Dual:

A single packet
What about other (non-erasure) links?

1 Packet over r Link $\Leftrightarrow r$ Packets over 1 Link

What about other (non-erasure) links?
[Ling-Scarlett IT'22]: For a single bit transmitted over a cascade of homogeneous BSCs,

$$
\vec{V}>C
$$

for $p \rightarrow 0$.

Stream of Causally Arriving Packets

System Model: Reminder

- Cascade of packet-erasure links
- IID Bernoulli erasures in each link
- Erasures are independent across different links (and times)
- Instantaneous perfect acknowledgment (ACK) feedback
- Stream of causally arriving packets (at random, periodically, ...)
- In-order communications

System Model: Reminder

- Source stream: Packet $m \in \mathbb{Z}$ arrives at time $A_{m} \in \mathbb{Z}$
- Output of link i serves as the input to node $i+1$
- At each time step: Packet sent in link i is erased with probability p_{i}
- Packets are acknowledged upon arrival
- If packet erased, it is retransmitted until successful arrival at next node
- Departure process
- Packet $m \in \mathbb{Z}$ arrives at final receiver at time $B_{m} \in \mathbb{Z}$

System Model: Reminder

- Arrive-failure probability: $P_{\mathrm{e}}(N) \triangleq \sup _{m \in \mathbb{Z}} \operatorname{Pr}\left(B_{m}>A_{m}+N\right)$
- Information velocity: $\vec{V} \triangleq \sup \left\{\alpha>0 \mid r=\lceil\alpha N\rceil, \lim _{N \rightarrow \infty} P_{e}(N)=0\right\}$
- $r \propto N$ is the proper growth rate
- Error exponent: $E \triangleq \lim _{N \rightarrow \infty}-\frac{1}{N} \log P_{e}(N) \quad$ for $\alpha<\vec{V}$

System Model: Reminder

- We know how the first packet behaves
- The second packet will arrive slower (probabilistically)
- The third even slower
- Steady state-we will concentrate on this

System Model: Queuing Theory Perspective

- Input stream: positive arrival (average) rate $\lambda>0$
- Condition for stable steady-state system: $\lambda<1-p_{i} \forall i \in\{1, \ldots, r\}$
- We will concentrate on homogeneous case: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$

Arrival processes:

- IID Bernoulli arrivals—by lifting the results for a single packet
- Stationary ergodic process
- Periodic (deterministic) arrivals
by converging to IID Bernoulli arrivals...

System Model: Queuing Theory Perspective

- Input stream: positive arrival (average) rate $\lambda>0$
- Condition for stable steady-state system: $\lambda<1-p_{i} \forall i \in\{1, \ldots, r\}$
- We will concentrate on homogeneous case: $p_{1}=p_{2}=\cdots=p_{r} \triangleq p$

Arrival processes:

- IID Bernoulli arrivals—by lifting the results for a single packet
- Stationary ergodic process
- Periodic (deterministic) arrivals
by converging to IID Bernoulli arrivals...

Burke's Theorem

- IID $\operatorname{Ber}(1-p)$ service times \Leftrightarrow IID $\operatorname{Ge\sigma }(1-p)$ interservice times
- Waiting time = queueing time + service time

Theorem [Hsu-Burke TCOM'76][Pujolle-Claude-Seret '86][Desert-Daduna '02]:
Assume a single queue in steady state with

- IID $\operatorname{Ber}(\lambda)$ arrival times $(\lambda<1-p)$
- IID $\operatorname{Ber}(1-p)$ service times
\Rightarrow IID $\operatorname{Ber}(\lambda)$ departure times
\Rightarrow \# packets in queue at time t is independent of departure process prior to time t
\Rightarrow Waiting time of a packet $\sim \operatorname{Ge\sigma }\left(1-\frac{p}{1-\lambda}\right) \Perp$ departure process before packet's departure
- Discrete-time analogue of classical results of [Burke '56][Reich ‘57][Jackson '54]

Reich's Theorem for Tandem Queues

Theorem [Hui '90][Prabhakar-Gallager TIT'03]:

Cascade of r queues in steady state with

- IID $\operatorname{Ber}(\lambda)$ arrival times $(\lambda<1-p \quad \forall i \in\{1, \ldots r\})$
- IID $\operatorname{Ber}(1-p)$ service times at server i
- Service times are independent across servers (and within)
\Rightarrow Waiting times of a packet are independent across queues
\Rightarrow Waiting time at queue $i \sim \operatorname{Ge\sigma }\left(1-\frac{p}{1-\lambda}\right)$
\Rightarrow \# packets in different queues are independent at a given time
- Discrete-time analogue of a classical result of [Reich '57]

Surprising Hidden Implication [Burke '63]

$$
\begin{aligned}
\text { Waiting time }= & \text { queueing time }+ \text { service time } \\
& W_{1}=Q_{1}+S_{1} \\
& W_{2}=Q_{2}+S_{2}
\end{aligned}
$$

- The waiting times are independent: $W_{1} \Perp W_{2}$
- The service times are independent: $S_{1} \Perp S_{2}$
- Service times are independent of respective queueing times: $S_{1} \Perp Q_{1}, S_{2} \Perp Q_{2}$
- But the queueing times are dependent! $Q_{1} \nVdash Q_{2}$
- Proof: By direct calculation, $\operatorname{Pr}\left(Q_{2}=0 \mid Q_{1}=0\right)>\operatorname{Pr}\left(Q_{2}=0\right)$. Alternatively,
- $S_{2} \Perp\left(Q_{1}, Q_{2}, S_{1}\right)$ and $Q_{2}+S_{2}=W_{2} \Perp W_{1} \Rightarrow Q_{2} \Perp W_{1}$
- $Q_{2} \nVdash S_{1}$ since for $S_{1} \rightarrow \infty, Q_{2} \rightarrow 0$
- $Q_{2} \Perp W_{1}=S_{1}+Q_{1}$

Cascade of r Independent Links, IID Bernoulli Arrivals

Corollary [Domanovitz-Philosof-K. INFOCOM'22]:
Cascade of r queues in steady state with

- IID $\operatorname{Ber}(\lambda)$ arrival times $(\lambda<1-p)$
- IID $\operatorname{Ber}(1-p)$ service times at server i
- Service times are independent across servers (and within)
\Rightarrow Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions:
- IV: $\vec{V}=1-\frac{p}{1-\lambda}$
- EE: for $\alpha<\vec{V}: E=\mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$

Heterogeneous links: Replace p_{i} with $\frac{p_{i}}{1-\lambda}$ in single-packet expressions

Stationary Ergodic Arrival Process

- Assume now a stationary ergodic arrival process of rate λ

Theorem [Mountford-Prabhakar '95]:

- Homogeneous queues

For $r \rightarrow \infty$, the departure process converges to IID $\operatorname{Ber}(\lambda)$ arrivals

- Proof uses the coupling technique of [Anantharam '93]

Stationary Ergodic Arrival Process: Illustration

Event: Initial state of the system
Next: Service @ Server 1

Ergodic process 2 of rate λ

Queue 1

Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 1
 Next: Recoloring @ Server 2

Queue 1
Ergodic process 1 of rate λ

Transmitter

Link 1

Queue 2

Queue 1
Ergodic process 2 of rate λ

Transmitter
-- -

Queue 2

Stationary Ergodic Arrival Process: Illustration

Stationary Ergodic Arrival Process: Illustration

Stationary Ergodic Arrival Process: Illustration

Event: Service @ Server 1
 Next: Recoloring @ Server 2

Stationary Ergodic Arrival Process: Illustration

Stationary Ergodic Arrival Process: Illustration

Stationary Ergodic Arrival Process: Illustration

Event: \quad Merge: Red + Blue = Yellow

Queue 1
Ergodic process 1 of rate λ

Transmitter

Queue 2

Queue 1
Ergodic process 2 of rate λ

Stationary Ergodic Arrival Process: Proof Idea

For any two ergodic input processes of the same rate λ

- Fraction of yellows increases with each queue
- Fraction of yellows $\rightarrow 1$ for $r \rightarrow \infty$
\Rightarrow Output processes converge to the same process
- Take one the input processes to have IID $\operatorname{Ber}(\lambda)$ arrivals
\Rightarrow By Burke's theorem the output of Server 1 has also IID $\operatorname{Ber}(\lambda)$ arrivals
\Rightarrow Holds also for all subsequent servers
\Rightarrow Any ergodic input process converges to IID $\operatorname{Ber}(\lambda)$ arrivals

Stationary Ergodic Arrival Process

- Is that enough to derive IV and EE results?

Stationary Ergodic Arrival Process

- Is it enough to derive IV and EE results? No $\boldsymbol{\theta}^{\circ}$
- It suffices to prove impossibility (converse) results
- For achievability: Requires bounding the effect of red/blue packets or a robustness/continuity result

Cascade of r Independent Links, Ergodic Arrival Process

Theorem [Domanovitz-Philosof-K.]:
Cascade of r queues in steady state with

- Ergodic arrival times of rate $\lambda<1-p$
- IID $\operatorname{Ber}(1-p)$ service times at server i
- Service times are independent across servers (and within)
- Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions
- IV: $\vec{V} \leq 1-\frac{p}{1-\lambda}$ (same as for IID Bernoulli arrivals)
- EE: for $\alpha<\vec{V}: E \leq \mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$ (upper bounded by EE of IID Bernoulli arrivals)
- Proof based on the technique of [Mountford-Prabhakar ‘95]

Heterogeneous links: Similar results apply.

Periodic (Deterministic) Arrivals

- Assume now periodic arrivals: A packet arrives every $1 / \lambda$ time steps

Extension of last theorem [Domanovitz-Philosof-K.]:

- Homogeneous/heterogeneous queues
\Rightarrow For $r \rightarrow \infty$, the departure process converges to IID $\operatorname{Ber}(\lambda)$ arrivals

Remark: Can be extended to cyclostationary cycloergodic processes

- Cycloergodic processes [Boyles-Gardner IT’83].
- More generally, extends to any input process whose long-time average converges to a deterministic value a.s.

Cascade of r Independent Links, Periodic Arrivals

Corollary [Domanovitz-Philosof-K.]:

- Homogenous links: Replace p with $\frac{p}{1-\lambda}$ in single-packet expressions
- IV: $\vec{V} \leq 1-\frac{p}{1-\lambda}$ (same as for IID geometric interarrivals)
- EE: for $\alpha<\vec{V}: E \leq \mathbb{D}\left(\alpha \| 1-\frac{p}{1-\lambda}\right)$ (same as for IID geometric interarrivals)
- Heterogeneous links: Replace p_{i} with $\frac{p_{i}}{1-\lambda}$ in single-packet expressions (same as for IID geometric interarrivals)

Numerical Results: IV versus Arrival Rate

- Homogeneous links with $p=0.001,0.01,0.1$

Numerical results: Arrive-Failure Probability

- Homogeneous links with $p=0.01$
- $\lambda=0.5$
- $\vec{V}=1-p=0.99$

Numerical Results: Different Arrival Processes

(a) Geometric i.i.d. interarrival times.

(b) Deterministic interarrival times.

(c) Gilbert-Eliott arrival process with $\gamma=0.01$, $\beta=0.1 . \varepsilon=0.45$.

- $\lambda=0.5, \mathbf{P}=(0.01,0.1), \mathbf{Q}=(0.5,0.5)$
- Gilbert-Elliott model: Two-state Markov model
- @Good state—packet arrives with probability ϵ - @Bad state—packet arrives with probability 1

Extensions

- Heterogeneous links (@backup slides \& paper)
- Several servers at each queue
- 2D regular grids

Discussion \& Future Research

- We assumed feedback \Rightarrow What is the IV without/with delayed feedback?
- We know the answer for a single packet since feedback is not needed
- We studied the behavior of a single/first packet and in stead state
- What is the IV for intermediate ("transient") packets?
- All the results are easily adaptable to the continuous-time setting
- In fact the queueing theory results were originally derived for this setting
- "Poisson IV"
- We assumed in-order transmission of all packets
- "Slow" packets can be thrown away to improve overall performance
- "Anytime Anywhere Reliability"-important if data pertain to control
- Other channels with/without feedback \& more general networks

Backup Slides

Single Packet, Homogeneous Links

Bounds on P_{e} via binomial coefficient bounds:

$$
P_{e}(N)=\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right)=\sum_{j=N+1}^{\infty}\binom{j-1}{r-1}(1-p)^{r} p^{r-j}
$$

Using the entropy bounds on binomial coeff. [Ash's book]: $\quad H_{b}(q) \triangleq-q \log q-(q-1) \log (1-q)$

$$
\frac{1}{2} \exp \left\{n H_{b}\left(\frac{k}{n}\right)\right\} \sqrt{\frac{n}{2 k(n-k)}} \leq\binom{ n}{k} \leq \frac{1}{\sqrt{\pi}} \exp \left\{n H_{b}\left(\frac{k}{n}\right)\right\} \sqrt{\frac{n}{2 k(n-k)}},
$$

yields

$$
\begin{aligned}
P_{e}(N) & \leq \sum_{\ell=N}^{\infty} \frac{(1-p) \sqrt{\ell} \exp \left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{\ell}| | 1-p\right)\right\}}{\sqrt{2 \pi(r-1)(\ell+1-r)}} \leq \sum_{\ell=N}^{\infty} \frac{(1-p) \sqrt{N} \exp \left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{N}| | 1-p\right)\right\}}{\sqrt{2 \pi(r-1)(N+1-r)}} \\
& =\frac{(1-p) \sqrt{N}}{\sqrt{2 \pi(r-1)(N-r+1)}} \cdot \frac{\exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \| 1-p\right)\right\}}{1-\exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N} \| 1-p\right)\right\}}
\end{aligned}
$$

Single Packet, Homogeneous Links

Bounds on P_{e} via binomial coefficient bounds:

$$
P_{e}(N)=\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right)=\sum_{j=N+1}^{\infty}\binom{j-1}{r-1}(1-p)^{r} p^{r-j}
$$

Using the entropy bounds on binomial coeff. [Ash's book]: $\quad H_{b}(q) \triangleq-q \log q-(q-1) \log (1-q)$

$$
\frac{1}{2} \exp \left\{n H_{b}\left(\frac{k}{n}\right)\right\} \sqrt{\frac{n}{2 k(n-k)}} \leq\binom{ n}{k} \leq \frac{1}{\sqrt{\pi}} \exp \left\{n H_{b}\left(\frac{k}{n}\right)\right\} \sqrt{\frac{n}{2 k(n-k)}},
$$

yields

$$
P_{e}(N) \geq \sum_{\ell=N}^{\infty} \frac{(1-p) \sqrt{\ell} \exp \left\{-\ell \cdot \mathbb{D}\left(\frac{r-1}{N}| | 1-p\right)\right\}}{\sqrt{2 \times 4(r-1)(\ell+1-r)}} \geq \frac{(1-p) \sqrt{N} \exp \left\{-N \cdot \mathbb{D}\left(\frac{r-1}{N}| | 1-p\right)\right\}}{\sqrt{8(r-1)(N+1-r)}}
$$

Single Packet, Heterogeneous Links

A single packet

Heterogeneous links: the erasure probabilities of different links $-p(1), p(2), \ldots p(r)$-may differ

- We will consider two settings for the erasure probabilities:

1. Fixed channels-type: Fraction ("type") $Q(i)$ of all r channels have erasure probability $P(i)$

- Assume only $S<\infty$ possible channel erasure probabilities (can be lifted):

$$
\mathbf{Q} \triangleq\left[\begin{array}{lll}
Q(1) & \cdots & Q(S)
\end{array}\right], \quad \mathbf{P} \triangleq\left[\begin{array}{lll}
P(1) & \cdots & P(S)
\end{array}\right]
$$

Remark: Order of $p(1), p(2), \ldots p(r)$ given a certain type \mathbf{Q} doesn't matter
2. Probabilistic setting: $p(1), p(2), \ldots p(r) \in \mathbf{P} \sim$ IID according to $\widetilde{\mathbf{Q}}$

Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction ("type") $Q(i)$ of all r channels have erasure probability $P(i)$

$$
\mathbf{Q} \triangleq\left[\begin{array}{lll}
Q(1) & \cdots & Q(S)
\end{array}\right], \quad \mathbf{P} \triangleq\left[\begin{array}{lll}
P(1) & \cdots & P(S)
\end{array}\right]
$$

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- IV: $\vec{V}=1 / \sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$
- EE, $1^{\text {st }}$ expression: for $\alpha<\vec{V}: E^{\text {fixed }}(\mathbf{Q})=(1-\alpha) \log x+\alpha \sum_{i=1}^{S} Q(i) \log \frac{1-P(i) x}{1-P(i)}$ where $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1-P(i) x}=\frac{1}{\alpha}$

Corollary: For $r=o(N)$, EE equals that of worst link: $E=-\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of IV characterization: Define

- $\alpha \triangleq r / N$
- $R(i) \triangleq$ \# links with erasure probability $P(i) \Leftrightarrow Q(i) \equiv R(i) / r$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} P_{e}(N) & =\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\frac{1}{r} \sum_{\ell=1}^{r} \tau_{\ell}>\frac{N}{r}\right)=\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\sum_{i=1}^{S} \frac{R(i)}{r} \cdot \frac{1}{R(i)} \sum_{\ell: p_{\ell}=P(i)} \tau_{\ell}>\frac{N}{r}\right) \\
& =\left\{\begin{array}{l}
0, \sum_{i=1}^{S} Q(i) \frac{1}{1-P(i)}<1 / \alpha \\
1, \quad \sum_{i=1}^{S} Q(i) \frac{1}{1-P(i)}>1 / \alpha
\end{array} \Rightarrow \vec{V}=\frac{1}{\sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}}\right.
\end{aligned}
$$

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of $\left(1^{\text {st }}\right)$ EE expression: By the Gärtner-Ellis theorem

$$
E^{\text {fixed }}=-\sup _{v>0}\left\{v-\alpha \sum_{i=1}^{S} Q(i) \log M_{i}(v)\right\}=(1-\alpha) \log x+\alpha \sum_{i=1}^{S} Q(i) \log \frac{1-P(i) x}{1-P(i)}
$$

where

- $M_{i}(v)=\frac{(1-P(i)) \exp \{v\}}{1-P(i) \exp \{v\}}$ is the moment-generating function of $\mathcal{G e}(1-P(i))$
- $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1-P(i) x}=\frac{1}{\alpha}$

Chernoff's upper bound on P_{e} : Results in the above EE (achievable only)

Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- IV: $\vec{V}=1 / \sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$
- EE, $1^{\text {st }}$ expression: for $\alpha<\vec{V}: E^{\mathrm{fixed}}(\mathbf{Q})=(1-\alpha) \log x+\alpha \sum_{i=1}^{S} Q(i) \log \frac{1-P(i) x}{1-P(i)}$
where $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1-P(i) x}=\frac{1}{\alpha}$
- EE, $2^{\text {nd }}$ expression: for $\alpha<\vec{V}: E^{\text {fixed }}(\mathbf{Q})=\min _{U \in \Delta_{S-1}} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)}| | 1-P(i)\right)$ $U(i) \geq \frac{\alpha Q(i)}{1-P(i)} \forall i \in[S]$
where $\Delta_{S-1} \triangleq\left\{\left(x_{1}, \ldots, x_{S}\right) \mid \sum_{i=1}^{S} x_{i}=1, x_{i} \geq 0 \forall i\right\}$ is the standard simplex
Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of $\mathbf{2 n d}^{\text {nd }}$ EE expression:

- Idea: For each $P(i)$ and $Q(i)$, look at corresponding fraction $U(i)$ of delay steps
- Upper bound: Run over all possible \mathbf{U}

$$
\begin{aligned}
P_{e}(N) & =\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right) \leq \sum_{U \in Q_{N}} \operatorname{Pr}\left(\sum_{\ell: p_{\ell}=P(i)} \tau_{\ell} \geq N U(i) \forall i \in[S]\right) \\
& \leq \sum_{U \in Q_{N}} \prod_{i=1}^{S} \operatorname{Pr}\left(\sum_{\ell: p_{\ell}=P(i)} \tau_{\ell} \geq N U(i)\right) \\
& \leq(N+1)^{S} \exp \left\{\begin{array}{l}
-\min _{U \in \Delta S-1} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)}| | 1-P(i)\right) \\
U(i) \geq \frac{\alpha Q(i)}{1-P(i)} \forall i \in[S]
\end{array}\right.
\end{aligned}
$$

- $Q_{N} \triangleq$ All partitions of N balls into S cells, divided by N (the "type class")

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of $\mathbf{2 n d}^{\text {nd }}$ EE expression:

- Idea: For each $P(i)$ and $Q(i)$, look at corresponding fraction $U(i)$ of delay steps
- Lower bound: Take "worst" possible U

$$
\begin{aligned}
P_{e}(N) & =\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right) \geq \max _{U \in Q_{N}} \operatorname{Pr}\left(\sum_{\ell: p_{\ell}=P(i)} \tau_{\ell}>N U(i) \forall i \in[S]\right) \\
& \geq \prod_{i=1}^{S} \operatorname{Pr}\left(\sum_{\ell: p_{\ell}=P(i)} \tau_{\ell}>N U(i)\right) \\
& \geq \exp \left\{\begin{array}{l}
\left.-\min _{U \in \Delta_{S-1}} \sum_{i=1}^{S} U(i) \mathbb{D}\left(\frac{\alpha Q(i)}{U(i)}| | 1-P(i)\right)\right\}
\end{array}\right.
\end{aligned}
$$

- $Q_{N} \triangleq$ All partitions of N balls into S cells, divided by N (the "type class")

Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction ("type") $Q(i)$ of all r channels have erasure probability $P(i)$

$$
\mathbf{Q} \triangleq\left[\begin{array}{lll}
Q(1) & \cdots & Q(S)
\end{array}\right], \quad \mathbf{P} \triangleq\left[\begin{array}{lll}
P(1) & \cdots & P(S)
\end{array}\right]
$$

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- IV: $\vec{V}=1 / \sum_{i=1}^{S} \frac{Q(i)}{1-P(i)}$
- EE, $1^{\text {st }}$ expression: for $\alpha<\vec{V}: E^{\text {fixed }}(\mathbf{Q})=(1-\alpha) \log x+\alpha \sum_{i=1}^{S} Q(i) \log \frac{1-P(i) x}{1-P(i)}$ where $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \frac{Q(i)}{1-P(i) x}=\frac{1}{\alpha}$

Corollary: For $r=o(N)$, EE equals that of worst link: $E=-\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Probabilistic Setting

2. Probabilistic setting:
$p(1), p(2), \ldots p(r) \in \mathbf{P} \sim$ IID according to $\widetilde{\mathbf{Q}}$

$$
\widetilde{\mathbf{Q}} \triangleq\left[\begin{array}{lll}
\tilde{Q}(1) & \cdots & \tilde{Q}(S)
\end{array}\right], \quad \mathbf{P} \triangleq\left[\begin{array}{lll}
P(1) & \cdots & P(S)
\end{array}\right]
$$

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- IV: $\vec{V}=1 / \sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}$ (as in fixed-channels type setting)
- EE, $1^{\text {st }}$ expression: for $\alpha<\vec{V}: E^{\mathrm{prob}}(\widetilde{\mathbf{Q}})=(1-\alpha) \log x-\alpha \sum_{i=1}^{S} \tilde{Q}(i) \log \frac{1-P(i)}{1-P(i) x}$ where $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \tilde{Q}(i) \cdot\{1-P(i)\} \cdot \frac{1-\alpha-P(i) x}{\{1-P(i) x\}^{2}}=0$

Corollary: For $r=o(N)$, EE equals that of worst link: $E=-\log \max \mathbf{P}$.

Single Packet, Heterogeneous Links: Probabilistic Setting

- Each τ_{ℓ} is now a mixture of geometric distributions:

$$
\operatorname{Pr}(\tau=\ell)=\sum_{i=1}^{S} \tilde{Q}(i) \cdot\{P(i)\}^{\ell-1} \cdot\{1-P(i)\}, \quad \mathbb{E}[\tau]=\sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}
$$

- $\left\{\tau_{\ell}\right\}$ are IID

Proof of IV characterization: Repeat proof steps for homogeneous links:

$$
\lim _{N \rightarrow \infty} P_{e}(N)=\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\frac{1}{r} \sum_{i=1}^{r} \tau_{i}>\frac{N}{r}\right)= \begin{cases}0, & \mathbb{E}[\tau]<1 / \alpha \\ 1, & \mathbb{E}[\tau]>1 / \alpha\end{cases}
$$

with $\alpha \triangleq r / N$, yields $\vec{V}=1 / \mathbb{E}[\tau]=1 / \sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}$

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of ($\left.1^{\text {st }}\right)$ EE expression: By Cramér's theorem:

$$
E=-\sup _{v>0}\left\{v-\alpha \log M_{\tau}(v)\right\}
$$

- M_{τ} is the moment-generating function of τ
- Chernoff's upper bound on P_{e} : Results in the above EE (achievable only)

Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz-Philosof-K. INFOCOM'22]:

- IV: $\vec{V}=1 / \sum_{i=1}^{S} \frac{\tilde{Q}(i)}{1-P(i)}$
- EE, $1^{\text {st }}$ expression: for $\alpha<\vec{V}: E^{\operatorname{prob}}(\widetilde{\mathbf{Q}})=(1-\alpha) \log x-\alpha \sum_{i=1}^{S} \tilde{Q}(i) \log \frac{1-P(i)}{1-P(i) x}$ where $x \in(1,1 / \max \mathbf{P})$ is the solution of $\sum_{i=1}^{S} \tilde{Q}(i) \cdot\{1-P(i)\} \cdot \frac{1-\alpha-P(i) x}{\{1-P(i) x\}^{2}}=0$
- EE, $2^{\text {nd }}$ expression: for $\alpha<\vec{V}: E^{\text {prob }}(\widetilde{\mathbf{Q}})=\min _{\mathbf{Q} \in \Delta_{S-1}}\left\{E^{\text {fixed }}(\mathbf{Q})+\alpha \mathbb{D}(\mathbf{Q} \| \widetilde{\mathbf{Q}})\right\}$ where $\Delta_{S-1} \triangleq\left\{\left(x_{1}, \ldots, x_{S}\right) \mid \sum_{i=1}^{S} x_{i}=1, x_{i} \geq 0 \forall i\right\}$ is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.

Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of $2^{\text {nd }}$ EE expression:

$$
\begin{aligned}
P_{e}(N) & =\operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N\right)=\sum_{\mathbf{Q} \in Q_{N}} \operatorname{Pr}\left(\sum_{i=1}^{r} \tau_{i}>N \mid \mathbf{Q}_{p}=\mathbf{Q}\right) \operatorname{Pr}\left(\mathbf{Q}_{p}=\mathbf{Q}\right) \\
& =\max _{\mathbf{Q} \in Q_{N}} \exp \left\{-N \cdot E^{\mathrm{fixed}}(\mathbf{Q})\right\} \cdot \exp \{-r \cdot \mathbb{D}(\mathbf{Q} \| \widetilde{\mathbf{Q}})\} \\
& =\exp \left\{-N \cdot \min _{\mathbf{Q} \in Q_{N}}\left\{E^{\mathrm{fixed}}(\mathbf{Q})+\alpha \mathbb{D}(\mathbf{Q} \| \widetilde{\mathbf{Q}})\right\}\right\}
\end{aligned}
$$

- $Q_{N} \triangleq$ All partitions of N balls into S cells, divided by N (the "type class") $)_{82}$

Fixed Channels-Type Setting vs. Probabilistic Setting

