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Motivation: 5G

* Huge increase in the number of connected devices

* Device-to-device (D2D) communications = relaying

e Cellular vehicle-to-everything (C-V2X): Platooning (URLLC)
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Motivation: 5G

* Huge increase in the number of connected devices

* Device-to-device (D2D) communications = relaying

* Open Radio Access Network (O-RAN): shared cell, cascade mode
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Motivation: 5G

* Huge increase in the number of connected devices

* Device-to-device (D2D) communications = relaying

Requires
* highly-reliable packet transmission

* Low latency

Fundamental limits?

* “First order”: Given delay, max # links a message can “reliably” traverse

* “Second order”: Error probability exponential decay rate



Comparison of the Two Problems

Property Classical problem Dual problem
# links Single Multiple
# messages Multiple Single
* Will be extended to multiple messages

i
Classical: N
: Transmitter | Link $» Receiver :
N
Batch encoding Batch decoding

X1 X1

| | Transmitter Receiver
Dual: Y (Node 1) F’._' Node 2 F'._' oo F’._' (Node 7+ 1) FD"BI

A single packet
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Comparison of the Two Problems

Property

Fundamental limit
(“First order”)

Classical problem

Capacity, C: v

e Max rate R of [# Messages]

Time steps

Time—oo
* Error probability B, —— 0

Dual problem

Information Velocity (IV), V:?

# Links ]

* Max speed «a of [Time STeps

Time—oo
* Error probability B, —— 0

Fundamental limit
(“Second order”)

Error Exponent, E: @ R < C /

Error Exponent (EE), E: @ a < V?

E(R) = lim ———IogP, E(ad) = lim ———IlogP,
Time—oo Time Time—-c Time
c I assica I : Transmitter » @ » Receiver
Batch encoding Batch decoding
X1 X1
Transmitter Receiver
DuaI: ;f% {NO{]E 1) F@M oo o mmmmmmdp Node 1 Qﬂl{?’ (NOCIET+1) %

A single packet

Causally-decoded
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Prior Art & Related Work

X

| | Transmitter Node 2 Receiver | |
A (Node 1) ode (Node 3)

Single bit through two BSCs (bit-flip links):
* [Jog—Loh IT’20][Huleihel-Polyanskiy—Shayevitz ISIT’19]: Bounds on the EE
e [Ling—Scarlett ISIT’21]: EE = EE of single BSC

Finite number of bits through a cascade of BSCs (bit-flip links):
* p probability of bit flip
e [Rajagopalan—Schulman ACM’94]: V<1- 2p

* This result is immediate given the IV for erasure links that we will see in this talk

« [Ling=Scarlett, ArXiv'21]: 0 < V < (1 — 2p)?

What about an online setup?

e Causally, constantly, arriving messages




Prior Art & Related Work

A(t) AO_-@ .“ 4@ B(t)

5i.(%) S, (1) Sn(t)

Cascaded computation: Stream of packets through n servers

e Infinite buffers
e Stochastic arrival and service curves
 Stochastic network calculus [Fidler—Rizk Comm surveys "15]:

Assuming independent service times, mean E2E delay « # servers
U

V>0



Prior Art & Related Work

Randomly arriving Causally-decoded
source packets source packets
X2 _________________ - ________-\,__“I - =, 1 ! - .‘ | .\"]
X.i ‘\1:|— I lr,.---' \‘ . I lr,-"" \_\ |I 3 r_f \\ : Xl
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Buffer 1 ‘ : : — , Receiver l |—b
Az Az A | % p o L % ' s . B By
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Cascaded computation: Stream of packets through n servers

e Infinite buffers
e Stochastic arrival and service curves
 Stochastic network calculus [Fidler—Rizk Comm surveys "15]:

Assuming independent service times, mean E2E delay « # servers
U

V>0
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System Model

Xy X2 X, X2 X,
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A
Randomly arriving ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

e Cascade of packet-erasure links

* [ID Bernoulli erasures in each link

* Erasures are independent across different links (and times)

* Instantaneous perfect acknowledgment (ACK) feedback

e Stream of causally arriving packets (at random, periodically, ...)

* In-order communications
11



System Model

X3 X2

X2
X X
| | | | | | Transmitter Receiver | | | |
A A (Node 1) @ Node 2 @ cee Node r @ (Node r+1) [ B B,
A A A
Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

* Source stream: Packet m € Z arrives attime A4,,, € Z
e Qutput of link i serves as the inputtonode i + 1

* At each time step: Packet sent in link i is erased with probability p;

* Packets are acknowledged upon arrival
* |f packet erased, it is retransmitted until successful arrival at next node
* Departure process

* Packet m € Z arrives at final receiver at time B,,, € Z
12



System Model

Xy X2 X, X2 X,

| | | | | | Transmitter Receiver | | | |

Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A

Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

* Arrive-failure probability: P.(N) £ sup,,,czPr(B,, > A,, + N)

* Information velocity: V2 sup {a > 0

r = [aN],Alli_I)lgoPe (N) = O}

v X N is the proper growth rate

* Error exponent: £ 2 Allim —%log P,(N) fora <V
13



Illustration

Event:

t = 0: Start

Queue 1

Transmitter
(Node 1)

A

@ Node 2

ACK/NACK

ACK/NACK

Receiver
(Node 3)
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Illustration

Event:

t = 1: Packet arrival (4; = 1)

Queue 1

Transmitter
(Node 1)

A

ACK/NACK

ACK/NACK

Receiver
(Node 3)
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Illustration

Event: t = 2: Packet arrival (A, = 2) & Link 1 erasure

Queue 1 Queue 2

Transmitter Receiver
————l
=7 (Node I) @ Node 2 @ (Node 3)

A A

ACK/NACK ACK/NACK
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Illustration

Event:

t = 3:Success @ Link 1

Queue 1

Transmitter
(Node 1)

A

ACK/NACK

ACK/NACK

Receiver
(Node 3)

1/



Illustration

Event:

t = 4: Failure @ Link 1, success @ Link 2 (B; =4), packet arrival (A3 =4)

Queue 1

Transmitter
(Node 1)

A

X
@ Node 2

Receiver
(Node 3)

ACK/NACK

ACK/NACK

13



Main Results

source packets

Xo
X] X]
| | | | | | Transmitter Receiver | | | |
A (Node 1) @ Node 2 @ eee Node r @ (Node r+1) BB,
A A A
Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded
source packets

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:
* Homogeneous links: p; =p, = =p,. £ p
* 1ID Bernoulli arrival input process: 11D packet arrivals with probability A

= IV in steady state: V=1- 1%

= EE in steady state: for a < V:E =D (““1 —1%)

Kullback-Leibler divergence: D (g||s) £ g 10g% +(1—q) 1081__3 5
- 1



Main Results

X3 By, =X

| | | | | | Transmitter Receiver | | | |

Az Ag Ay (Node 1) @ Sleacd @ e Node # @ (Node r+1) | B, B,
A A A

Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:
* Homogeneous links: p; =p, = =p,. £ p
 Stationary ergodic input process of arrival rate 4

— IV in steady state: V<1-— 1%

— EE in steady state: for a < V:E<D (““1 _1%1)

20



Main Results

, X.
X, 3

source packets

X
| | | | | | Transmitter Receiver | | | |
A (Node 1) @ Node 2 @ eee Node r @ (Node r+1) BB,
A A A
Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded
source packets

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:
* Homogeneous links: p;, =p, = =p,. £ p

* Deterministic periodic input process: A packet arrives every 1/A time steps
* More generally, arrivals at times |i - a| for afixeda € Qand alli € Z

— IV in steady state: V<l- 1%1

> EEinsteady state:fora <V : E <D (“”1 _%)

21



Main Results: Extensions

X3y X2 X, X5 X,
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A
Randomly arriving ACK/NACK ACK/NACK ACK/NACK Causally-decoded
source packets source packets

* Closed-form results for heterogeneous links as well

* Based on large deviation / method of types techniques
* Treatment can be extended to cyclostationary cycloergodic input processes

* Cycloergodic processes [Boyles—Gardner IT'83]

and more generally, to arrival process whose long time average = mean rate

22



Main Results: Proof Plan

Xy X2 X, X2 X,

| | | | | | Transmitter Receiver | | | |

Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A

Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

* Single source packet

* Stream of packets for different arrival processes:

* |ID Bernoulli arrival input process—by lifting the results for a single packet
 Stationary ergodic input process

* Periodic (deterministic) arrivals

23



Single Packet



Single Packet, Single Link

X
| | Transmitter Receiver | |
A (Node 1) (Node 2)

* Assume the packet is available at the sender attime A =1

e Single link: 7 =1

* Arrive-failure probability:

P.(N) = p" = exp{—N - (—logp)}
U
E = —logp



Single Packet, Homogeneous Links

X1 X1

Transmitter / o //_\ m Receiver
_Ell" (Node 1) F’@“D—’E—’@@—’ o —E_Mﬁ"k PP (Node r+1) )_g?
A single packet Causally-decoded
[ o - - - A
Homogeneous links: p;, = p, =+ =p, £ p

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:

—

cIV:V=1-0p
° EE:fOra<I—/): E :]D)(a”l_p) éalog%‘F(l—a)logl_Ta

* P, over r links across N time steps is bounded as

( —(N-1)- r _ )

(- T espf- N -B(E7 L1 -p)] (-0 -0l -»)}
G —DWN—r+ D < P,(N) < min{ (1-p)WN eXp{—N-]D)( 5 ||1_p)} |
' ' O/Zﬂ(r_l)(N_r-l_l).1_eXP{—N‘D(r;,1||1—p)}J

Corollary: Forr = o(N), E = —logp 26



Single Packet, Homogeneous Links

Proof:

e t;—time of arrival at node i + 1 (over link i)
* T; = t; — t;_1—delay caused by link i

* Clearly, 74,79, ..., T ~ IlID Geo (1 — p)

T
P.(N) = Pr Zrl- >N
=1

IV expression derivation: For « =2 r/N

r
1 N
Al,im P,(N) = lim Pr _zfi N {O, E[t] < 1/a

N—o T 4 - r 1, E[t]>1/a
1=

27



Single Packet, Homogeneous Links

EE expression derivation: By Chernoff’s upper bound on P,:

r

P,(N) = Pr z 7; >N | <exp {— sup{(N — 1)s — alogMT(s)}}

. s>
1=1 0

- e 0D (o] 1)

By Cramér’s theorem, the above achievable exponent is tight:

F = — sup{s — alogMT(S)} — 1D>(06||1 o P)
s>0

1—
where M, (s) = Elexpist}] = (1-2);;?5}

28



Single Packet, Homogeneous Links

Remarks:

—

* 1 — p = IV—expected # relays the message traverses per time step
* Can be used as alternative def. of IV over erasure links

* Original def. is akin to “almost lossless source coding” whereas
alternative def. is akin to “lossless (variable-length) source coding”

29



1 Packet over 7 Link & r Packets over 1 Link

Property Classical problem Dual problem
# links Single Multiple
# messages Multiple Single
Homogeneous a4 - . 0
erasure links Capacity: C =1 —p Information Velocity (IV) V =1 —p

* Observation for homogeneous links: C = V

R
X1

CIaSSica I . » Transmitter

 |sita coincidence?

bl B

» /L;lk\ » Receiver
\_/

Batch encoding Batch decoding
of source packets of source packets

X3 X1
| | Transmitter Node 2 cee Nod Receiver
Dual: As | (Node 1) o === Node r (Node 7 +1) B

A single packet




1 Packet over 7 Link & r Packets over 1 Link

Property Classical problem Dual problem
# links Single Multiple
# messages Multiple Single
Homogeneous a4 - . 0
erasure links Capacity: C =1 —p Information Velocity (IV) V =1 —p

* Observation for homogeneous links: C = V

e |sit acoincidence? Of course not. ©

R
X1

CIaSSica I . » Transmitter

bl B

» /L;lk\ » Receiver
\_/

Batch encoding Batch decoding
of source packets of source packets

X3 X1
| | Transmitter Node 2 cee Nod Receiver
Dual: As | (Node 1) o === Node r (Node 7 +1) B

A single packet




1 Packet over r Link & r Packets over 1 Link

Cla Ss' ca I Transmitter @ » Receiver
ical: | o —
Batch encoding Baltch decoding
of source packets of source packets
X1 S X1
. | | Transmitter , /_\ m Receiver
Dual. Y (Node 1) }—b LmkD—b Node 2 Lmky—b see —PE—M\QHK 7 — (Node 7 + 1) }_g?

A single packet

Homogeneous erasure links:
 The two problems are in fact equivalent for erasure links
 More generally, for erasure links with ACK feedback:

m messages over r links © r messages over m links

Remark: For single packet transmission, the same results hold without feedback
32



1 Packet over r Link & r Packets over 1 Link

. Transmitter » Link $» Receiver
Classical: A1)

Batch encoding Baltch decoding
of source packets of source packets

X1

X1 _
. | | Transmitter / \ _ /_\ m Receiver
Dual. e (Node 1) }—bﬁnk/l Node 2 \L\mI\ 2 ¢ oo mmmmmp Node r Qﬂk 7 — (Node 7+ 1) B

A single packet

Heterogeneous erasure links: The parallel “classical problem” is weird:

* Upon a successful packet-arrival, the erasure probability is chosen from P

* Erasure probability remains fixed until the next success

Alternative Problem: P (i) is picked with probability Q (i)

* The capacity of the alternative setting is higher (similar to waiting-time paradox)
33



1 Packet over r Link & r Packets over 1 Link

L 1 /—‘\ » H
C I assica I . Transmitter > @ » Receiver
Batch encoding Batch decoding
of source packets of source packets

Xq X1

Dual' | | Transmitter Link 1 Node 2 Link 2 cee Node 7 Link Receiver
. m (Node 1) \m 0 in ) Node 7 \\m T (Node 7 + 1) B

A single packet

What about other (non-erasure) links?

34



1 Packet over r Link & r Packets over 1 Link

CIa Ssi ca I . Transmitter > @ » Receiver
Batch encoding Batch decoding
of source packets of source packets
Xq X1
Dual' | | Transmitter Link 1 Node 2 Link 2 cee Node 7 Link Receiver
. e (Node 1) \ln ode in ) Node 7 \\m T (Node r + 1) 2
A single packet Causally-decoded

What about other (non-erasure) links?

[Ling—Scarlett IT’22]: For a single bit transmitted over a cascade of homogeneous BSCs,
V>C

forp — 0.

35



Stream of Causally Arriving Packets



System Model: Reminder

Xy X2 X, Xo X
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A
Randomly arriving ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

e Cascade of packet-erasure links

* [ID Bernoulli erasures in each link

* Erasures are independent across different links (and times)

* Instantaneous perfect acknowledgment (ACK) feedback

* Stream of causally arriving packets (at random, periodically, ...)

* In-order communications
37



System Model: Reminder

X3 X2

Xy
X] Xl
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A
Randomly arriving

ACK/NACK ACK/NACK ACK/NACK Causally-decoded

source packets source packets

* Source stream: Packet m € Z arrives attime A4,,, € Z
e Qutput of link i serves as the inputtonode i + 1

* At each time step: Packet sent in link i is erased with probability p;

* Packets are acknowledged upon arrival
* |f packet erased, it is retransmitted until successful arrival at next node
* Departure process

* Packet m € Z arrives at final receiver at time B,,, € Z
38



System Model: Reminder

Xy X2 X,

Transmitter
Az Ay Ay (Node 1)

Xo

A

Randomly arriving
source packets

ACK/NACK

L

X1
Receiver M
NOdezil:j NDdET' (Node T'+1) By B,
A

ACK/NACK ACK/NACK Causally-decoded
source packets

* Arrive-failure probability: P.(N) £ sup,,,czPr(B,, > A,, + N)

* Information velocity: V2 sup {a > 0

r = [aN],Alli_I)lgoPe (N) = O}

v X N is the proper growth rate

* Error exponent: £ 2 Allim —%log P,(N) fora <V
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System Model: Reminder

Xy X2 Xo

X] Xl
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee ‘ N @ (Node r+1) | B, B,

~ A

Randomly arriving ACK/NACK ACK/NACK ACK/NACK Causally-decoded
source packets source packets

We know how the first packet behaves

The second packet will arrive slower (probabilistically)

The third even slower

Steady state—we will concentrate on this

40



System Model: Queuing Theory Perspective

Xy X2 X, X2 X,
| | | | | | Transmitter Receiver | | | |
Az A Ay (Node 1) @ i @ eee N @ (Node r+1) | B, B,
A A A
Randomly arriving ACK/NACK ACK/NACK ACK/NACK Causally-decoded
source packets source packets

* Input stream: positive arrival (average) rateA > 0
 Condition for stable steady-state system: 1 <1 —p; Vi€ {1,..,r}

* We will concentrate on homogeneous case:p; =p, = =p, = p

Arrival processes:

* |ID Bernoulli arrivals—by lifting the results for a single packet

 Stationary ergodic process }

by converging to [ID Bernoulli arrivals...
* Periodic (deterministic) arrivals

41



System Model: Queuing Theory Perspective

Randomly arriving Causally-decoded
source packets source packets
: X 0 ,________1__“! . e o ,_-'_______1_ ! Xa i
X3 Xyjpzzz=mmmzmmm g s Sy L N ESSssmsosons - X

L f v f v! L 1 N vy
I
» Buffer 1 ' r ® ¢ ¢ == Buffer r — , Receiver
Az Ag -"llu: at yy r! 0! Lo ‘) B JE
1 N ! | 5 ’ 1 “ ’
———————————— “ # 1 a # - == " # |
. - i : - - | - - 1

___________________________________________________________________________________

* Input stream: positive arrival (average) rateA > 0
 Condition for stable steady-state system: 1 <1 —p; Vi€ {1,..,r}

* We will concentrate on homogeneous case:p; =p, = =p, = p

Arrival processes:
* |ID Bernoulli arrivals—by lifting the results for a single packet

 Stationary ergodic process
yEre P by converging to IID Bernoulli arrivals...

* Periodic (deterministic) arrivals 15



Burke’s Theorem

 |ID Ber (1 — p) service times & IID Geo'(1 — p) interservice times

* Waiting time = queueing time + service time

Theorem [Hsu—Burke TCOM’76][Pujolle—Claude—Seret '86][Desert—-Daduna ’02]:
Assume a single queue in steady state with

* |ID Ber(A) arrival times (1 <1 — p)

* |ID Ber (1 — p) service times

= |ID Ber (A1) departure times
= # packets in queue at time t is independent of departure process prior to time t

= Waiting time of a packet~Geo (1 — %) 1 departure process before packet’s departure

e Discrete-time analogue of classical results of [Burke ‘56][Reich ‘57][Jackson ‘54]
43



Reich’s Theorem for Tandem Queues

Theorem [Hui '90][Prabhakar—Gallager TIT’03]:

Cascade of r queues in steady state with
* IID Ber(A) arrivaltimes (A1 <1—p Vie{l, ..r}
* [ID Ber (1 — p) service times at server i

* Service times are independent across servers (and within)

= Waiting times of a packet are independent across queues
= Waiting time at queue [ ~ Gecr (1 — 1%1)
= # packets in different queues are independent at a given time

* Discrete-time analogue of a classical result of [Reich ‘57]

44



Surprising Hidden Implication [Burke '63]

Waiting time = queueing time + service time
Wiy =01+5
Wy =0 +5;

* The waiting times are independent: W; 1L W,

* The service times are independent: §; 1L S,

* Service times are independent of respective queueing times: S; 1L Q1, S, 1L Q,
* But the queueing times are dependent! Q, % Q,

* Proof: By direct calculation, Pr(Q, = 0|Q; = 0) > Pr(Q, = 0). Alternatively,
* Sy 1 (Q1,0Q2,81) and Qy + S, =W, LWy = Q, LW, @ e

* (), kS, sincefor S > o, Q, = 0

* QLW =5+ @ @



Cascade of r Independent Links, 11D Bernoulli Arrivals

Corollary [Domanovitz—Philosof-K. INFOCOM’22]:

Cascade of r queues in steady state with

* [ID Ber(A) arrival times (1 <1 —p)

* [ID Ber (1 —p) service times at server i

* Service times are independent across servers (and within)

= Homogenous links: Replace p with 1%1 in single-packet expressions:
cv:V=1-L
1-1

c EE:fora<V: E =D (““1 _%)

Heterogeneous links: Replace p; with Piin single-packet expressions
pl -y

1
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Stationary Ergodic Arrival Process

* Assume now a stationary ergodic arrival process of rate 4

Theorem [Mountford—Prabhakar ‘95]:

For r — oo, the departure process converges to |ID Ber (1) arrivals

* Proof uses the coupling technique of [Anantharam ‘93]

47



Stationary Ergodic Arrival Process: lllustration

Event: Initial state of the system
_____________ Q Lle_uE:_l____________ Queue 2
Ergodic process 1 E, ———————————————— ! ]
of rate A_i'l* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Service @ Server 1
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_;'* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Recoloring @ Server 2
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— \ F
of rate A_i'l* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Service @ Server 2
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_;'* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Service @ Server 1
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_;'* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Recoloring @ Server 2
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_;'* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Service @ Server 1
_____________ Q Lle_u_e_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_;'* Buffer 1
: Transmitter

Ergodic process2 |-~~~ ----------~

of rate A_* Buffer 1




Stationary Ergodic Arrival Process: lllustration

Event: Merge: Red + Blue =
_____________ Q Lle_uf:_l____________ Queue 2
Ergodic process 1 E, ———————————————— F
of rate A_:"» Buffer 1
: Transmitter

Ergodic process2 |~ —-----~---------
of rate A

s Buffer |




Stationary Ergodic Arrival Process: Proof Idea

For any two ergodic input processes of the same rate 4
* Fraction of yellows increases with each queue
* Fraction of yellows = 1 forr — o

= Output processes converge to the same process
* Take one the input processes to have IID Ber (A1) arrivals
= By Burke’s theorem the output of Server 1 has also IID Ber(A) arrivals

= Holds also for all subsequent servers

= Any ergodic input process converges to IID Ber* (A1) arrivals
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Stationary Ergodic Arrival Process

* Is that enough to derive IV and EE results?
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Stationary Ergodic Arrival Process

* |s it enough to derive IV and EE results? No ®
* |t suffices to prove impossibility (converse) results
* For achievability: Requires bounding the effect of red/blue packets

or a robustness/continuity result
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Cascade of r Independent Links, Ergodic Arrival Process

Theorem [Domanovitz—Philosof-K.]:

Cascade of 7 queues in steady state with

* Ergodic arrival timesofrateA < 1 —p

IID Ber (1 — p) service times at server i

Service times are independent across servers (and within)

Homogenous links: Replace p with % in single-packet expressions

e IV: V<1 1%1 (same as for IID Bernoulli arrivals)

- EE:fora<V: E<D (a||1 — %) (upper bounded by EE of IID Bernoulli arrivals)

Proof based on the technique of [Mountford—Prabhakar ‘95]

Heterogeneous links: Similar results apply.
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Periodic (Deterministic) Arrivals

* Assume now periodic arrivals: A packet arrives every 1/1 time steps

Extension of last theorem [Domanovitz—Philosof-K.]:
* Homogeneous/heterogeneous queues

= For r — oo, the departure process converges to 1D Ber(A) arrivals

Remark: Can be extended to cyclostationary cycloergodic processes
* Cycloergodic processes [Boyles—Gardner IT'83].

 More generally, extends to any input process whose long-time average

converges to a deterministic value a.s.
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Cascade of r Independent Links, Periodic Arrivals

Corollary [Domanovitz—Philosof-K.]:

* Homogenous links: Replace p with % in single-packet expressions

cIV: V<1 — 1% (same as for IID geometric interarrivals)

« EE:fora <V : E<D (a||1 — 1%) (same as for IID geometric interarrivals)

Di
1-4

(same as for IID geometric interarrivals)

* Heterogeneous links: Replace p; with in single-packet expressions
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Numerical Results: IV versus Arrival Rate

* Homogeneous links withp = 0.001, 0.01, 0.1

1

087

0.67

T

04

0.2

0

|—p=0.001

—p=0.01
p=0.1

=

0

0.2

0.4

0.6

0.8 1
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Numerical results: Arrive-Failure Probability

* Homogeneous links withp = 0.01
« A=05

—

« V=1-—p=0.99

 a=0.96 « r= 20,100,200,1000 relays
0 0
107 F——— | ' | : 10 ' . ; =
T | —r=20 ==
| ot =100
' r=200
[~ r=1000
1075 —1Iv
1 ()
o
107
;———Upperbound y
| — Empirical 10
Lower bound | / ; : ,
' ' ' ' ) 100 = ' | e
100 200 300 400 500 0.8 0.85 0.9 0.95 1

N a=r/N
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Numerical Results: Different Arrival Processes

20 |

A =05 P = (0.01,0.1),Q = (0.5,0.5)

Gilbert—Elliott model: Two-state Markov model

—r=20 i =0
= lm —r=1 UG | _r=1{:":|
=200 r=200 r=2010
—r=1000 —r=1000 _l_ —r=1000
- IV -~V -- IV
@ @
o ('
5 . . L 5 . L 5 . . . .
10 10 10
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
=N o=0'N a=IN
(a) Geometric 1.1.d. interarrival times. (b) Deterministic interarrival times. (c) Gilbert—Elott arrival process with = 0.01,
A=01. =045

@ Good state—packet arrives with probability €

@Bad state—packet arrives with probability 1 ”




Extensions

* Heterogeneous links (@backup slides & paper)
* Several servers at each queue

* 2D regular grids

X33
[Makur—Mossel-Polyanskiy TIT 22]
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Discussion & Future Research

We assumed feedback = What is the IV without/with delayed feedback?
* We know the answer for a single packet since feedback is not needed

We studied the behavior of a single/first packet and in stead state

What is the IV for intermediate (“transient”) packets?

All the results are easily adaptable to the continuous-time setting

* In fact the queueing theory results were originally derived for this setting
e “Poisson IV”

We assumed in-order transmission of all packets
* “Slow” packets can be thrown away to improve overall performance

“Anytime Anywhere Reliability” —important if data pertain to control

Other channels with/without feedback & more general networks

IV League
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Single Packet, Homogeneous Links

Bounds on P, via binomial coefficient bounds:

o =r(Saon)- 3 (1 -

i=1 j=N+1

Using the entropy bounds on binomial coeff. [Ash’s book]: Hy(q) 2 —qlogqg — (g — 1) log(1 — q)

1 k n _ n _ 1 k n
27 {"H” (E)} 2k(n—k) (k) =Yz P {"H” (E)} 2k(n — k)’

PV < i (1—p)\/?eXp{—£’-lD<T;1| |1—p)}S i (1—p)\/ﬁexp{—€-u)>(r;,1||1—p)}
= V2rr—-DE+1-7) J2rr — DN +1—1)

yields

¢
r—1

 aepw ewlnen(Sin-p)
Ve DO 4D 1-exp{-N-D (L1 -p)]

N
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Single Packet, Homogeneous Links

Bounds on P, via binomial coefficient bounds:

P,(N) = Pr (2 T > N)

i=1

Using the entropy bounds on binomial coeff. [Ash’s book]:

1 . k n -
ie"p{" b(%)} 2k(n—k)_(

® (1—p)\/?exp{—£-]]))<7‘;,—1

yields

[0.0)

j_l T T—]J
= 2 <r_1>(1—p)p g

n
k

)

j=N+1

Hy(q) £ —qlogq — (@ — 1) log(1 —q)

1 k n
7P {"Hb (E)} 2k(n — k)’

1—p)}2<1—pwexp{—N-D(r1_v1||1‘p)}

P,(N) > z

— V2x4r—-1DE+1-71)

J8r—1DIN+1-r1)
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Single Packet, Heterogeneous Links

X1 X4

Transmitter / o . /_\ m Receiver

A single packet Causally-decoded

Heterogeneous links: the erasure probabilities of different links—p (1), p(2), ... p(r)—may differ
* We will consider two settings for the erasure probabilities:

1. Fixed channels-type: Fraction (“type”) Q (i) of all r channels have erasure probability P (i)

* Assume only S < oo possible channel erasure probabilities (can be lifted):

Q=[e) - Q) P=[PA) - P(S)]

Remark: Order of p(1),p(2), ...p(r) given a certain type Q doesn’t matter

2. Probabilistic setting: p(1),p(2), ...p(r) € P ~ IID according to Q
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Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction (“type”) Q(i) of all r channels have erasure probability P (i)

Q[ - Q) P2[PQA) - P(S)]

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:

7. 40
ViV =1/8 0

* EE, 15t expression: for a < V: Efixed(Q) = (1 —a)logx + aY;_,Q(@i)log 1:9;2;

, . S Q) _ 1
where x € (1,1/ max P) is the solution of },;_, P(r @

Corollary: Forr = o(N), EE equals that of worst link: E = —log maxP. -



Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of IV characterization: Define
ca2r/N
* R(i) £ # links with erasure probability P(i) & Q(i) = R(i)/r

R WL BT

£=1 =1 £:pp=P(i)

0, ;Q(i)l_P(l)<1/a ) 1
= < o | = V= : 1 Q(i).
\1, ; Q (i) 1= P00 >1/a 1—P(i) )



Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of (1) EE expression: By the Gartner-Ellis theorem

( A

S
Efixed — _qup{v — az Q(i)log M;(v)
i=1

v>0
\

1—P(i)x
1—P(i)

S
»=(1—a)logx + az Q(i) log
i=1

y,
where

« M;(v) = (1:£g;)ei)§1{:}/} is the moment-generating function of gea(l — P(i))

* x € (1,1/ maxP) is the solution of ¥;_, 1_Qp((iz)x —

_1
a
Chernoff’s upper bound on P,: Results in the above EE (achievable only)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz—Philosof—-K. INFOCOM’22]:
cv:v=1/y5 20

i=11_p()
* EE, 15t expression: for a < V: Efixed(Q) = (1 —a)logx + aZle Q (i) log 11__PP(2;C
, . S Q) _ 1
where x € (1,1/ max P) is the solution of },;_, TP(x — a
- EE, 2" expression: for a < V : Efixed(Q) = min > L U)D (aQ(.i)‘ ‘1 — P(i))
UEA:g_l U(i)
U222 viers

1-P(i)

where Ag_; £ {(xl, ...,x5)| > ix;=1, x; =0 ‘v’i} is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2"? EE expression:

* |dea: For each P(i) and Q(i), look at corresponding fraction U (i) of delay steps
* Upper bound: Run over all possible U

r

P,(N) = Pr Zri>N < Z Pr( z 7, = NU(D) Vie[5]>

=1 Ueldn L:pp=P(i)
S
< Z HPr z 7, = NUG)
Uegy i=1 L:pp=P(i)
% S _ . S . (aQ(l) _ . )
<(N+1)exp UIETRSI-L > U@)D o 1—P(i)
U222 vie[s]

1-P(i)

* Qy = All partitions of N balls into S cells, divided by N (the “type class”)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2"? EE expression:

* |dea: For each P(i) and Q(i), look at corresponding fraction U (i) of delay steps
* Lower bound: Take “worst” possible U

r

P,(N) = Pr ZTL>N >maXPr< z T, > NU(i) Vie[S])

UeQ
N \ewe=P@)

> ﬁPr z 1, > NU(Q)

i=1  \ &pp=P(Q)

> exp ) — Urerkisrl z U(l)lD)< 1- P(l)>

U220 viers)

* Qy = All partitions of N balls into S cells, divided by N (the “type class”)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

1. Fixed channels-type:

Fraction (“type”) Q(i) of all r channels have erasure probability P (i)

Q[ - Q) P2[PQA) - P(S)]

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:

7. 40
ViV =1/8 0

* EE, 15t expression: for a < V: Efixed(Q) = (1 —a)logx + aY;_,Q(@i)log 1:9;2;

, . S Q) _ 1
where x € (1,1/ max P) is the solution of },;_, P(r @

Corollary: Forr = o(N), EE equals that of worst link: E = —log maxP. .



Single Packet, Heterogeneous Links: Probabilistic Setting

2. Probabilistic setting:
p(1),p(2),...p(r) € P ~1ID according to Q

Q2[0() - Q)] P2[PQ) - P(S)]

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:

c IV:V = 1/2;-9:1 1521(:()1,) (as in fixed-channels type setting)

* EE, 1%t expression: fora < V: Epmb(ﬁ) =(1—a)logx — “Zi'g=1 Q() log 11—_Pp((ig)x

where x € (1,1/ max P) is the solution of Y;_, 0 (i) - {1 — P(i)} - zl_fp_(lij)(zf =

Corollary: Forr = o(N), EE equals that of worst link: E = —log maxP. 28



Single Packet, Heterogeneous Links: Probabilistic Setting

* Each 7, is now a mixture of geometric distributions:

= G
1— P(i)

=1

S
Pr(r=0) = ) 0O - (POY-{1-P®},  Elt] =
=1

e {t,}arellD

Proof of IV characterization: Repeat proof steps for homogeneous links:
I _ N\ (0, E[]<1/
, T| <1/«
jim Fe(N) = lim Pr FZ”>? _{1, E[t] > 1/a
1=

Q1)

with a £ r/N, yields V = 1/E[t] = 1/Zl 17-p()) 79




Single Packet, Heterogeneous Links: Fixed Channels-Type
Proof of (1%t) EE expression: By Cramér’s theorem:

E=—sup{v—alogM (v)}

v>0

* M. is the moment-generating function of T

* Chernoff’s upper bound on P,: Results in the above EE (achievable only)
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Theorem [Domanovitz—Philosof-K. INFOCOM’22]:

civ: V=135 LW

1=19_p(i)
« EE, 1%t expression: fora < V : EprOb(Q) =(1-a)logx —aY;_,0()log 11__Pp((l,§)x
where x € (1,1/ max P) is the solution of ¥';_, Q(i) - {1 — P(i)} - ;1_—0:(1;)(2; =0

» EE, 2™ expression: for a < V : EP™P(Q) = Qreriin {EM*d(Q) + aD(QI|Q)]
S—1

where A¢_; £ {(xl, ...,x5)| > o xi=1,x=0 ‘v’i} is the standard simplex

Remark: Both EE expressions can be proved to be equal also directly via the KKT conditions.
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Single Packet, Heterogeneous Links: Fixed Channels-Type

Proof of 2"? EE expression:

1=1 Qeln

P,(N) = Pr (z T; > N) z Pr(¥i_,7; > N|Q, = Q) Pr(Q, = Q)

_(1123)1\(, exp{ —N - Eﬁxed(Q)} exp{ T D(QHQ)}

= exp{ —N - érEIIQIIL{Eﬁxed(Q) + QD(Q”Q)}}

* Qn = All partitions of N balls into S cells, divided by N (the “type cIass")82



Fixed Channels-Type Setting vs. Probabilistic Setting

Q=0Q=(05 0.2 0.3), P=(02 05 0.7)

* I7 — 05 0.3- \

024 \

Error Exponent

*
0.1 \

0.1 02 03 04

» = = Fixed === Prob.| 83
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