
Juggling Robot
Project Number: 18-1-1-1623

By: Omer Ben-Nun , Ehud Hayat Advisor: Dr. Anatoly Khina

Project Carried Out at Tel Aviv University

A robotic arm system that receives commands using a custom Python
interface via TCP/IP protocol, and can juggle a ball.

Overview

• A juggling robot is a robot which can successfully throw and catch balls or other objects

• These robots usually depend on optical sensors in a closed loop to function properly

• The first juggling robot was built by Claude Shannon (1916-2001) and was able to juggle 3 balls.

• Robotic arms today are paired with a controller, which gives instructions to the arm itself.

• We have implemented an open loop system, with possibility to close a control loop in the future.

Claude Shannon, juggling

Motivation

• Studying human motion.

• Understanding advantages of closed loop control

• Gaining understanding of sensorimotor control

• Studying theory of robotics and overcoming engineering challenges in their control

• Creating a modular system for future implementation of complex control algorithms

Implementation

• Computer communicates with robotic-arm controller

• Communication is via TCP/IP protocol, over Ethernet

• High communication frequency of up to 500 [Hz]

• The UR3E robot is a Cobot; a robotic arm that is intended to physically interact with humans in

a shared workspace

Implementation - hardware

• UR3E robotic arm

•A collaborative robotic arm

•Can be controlled directly from a touchpad, or by computer over TCP/IP protocol

• UR3E controller

•All instructions to the arm pass through the controller

•Has many inputs and outputs, to which sensors can be connected

• Control touch pad

•Easy and intuitive control of the robot directly

•Very efficient for simple programs and tasks

Implementation – hardware, continued

• Computer

•Strong HW, able to run complex algorithms quickly

•Communicates with controller over TCP/IP protocol

• Sensors

•May be optical, or any other kind

•Control with sensors is not implemented in the first phase of the project

What have we done:

• Establish system requirements for desired performance

• Survey a variety of robots and purchase the best one

• Create and print a 3D grip model

• 3D modeling of a table for robotics' arm lab

• Develop user friendly control environment in Python language

• Conduct system ‘bring up’

• Juggle using a computer via network connection

Robotic arm survey

• The first stage of our project was understanding our needs and conducting a survey of our possibilities

• UR3E was our best option, in most aspects

•Control is done by sending scripts over TCP/IP, which is compatible with any programming language

• It is collaborative, therefore much safer

•Cheaper than other alternatives
UNIVERSAL ROBOTICS –

UR3e

(UR, n.d.)

KUKA - KR3

(KUKA, n.d.)

Denso - Vs050

(Denso, n.d.)

70,000₪€20,000€20,000מחיר משוער

ג"ק4ג"ק3ג"ק3משקל מקסימלי להרמה

TCP/IP 100 Mbit12 ms latency12 ms latencyמהירות תקשורת

אינו זקוק לכלוב לעבודהזקוק לכלובאינו זקוק לכלוב לעבודהעבודה בסביבת אנשים

0.03mm0.02mm0.02mmדיוק
:כניסותיציאות וכניסות לבקר

דיגיטליות16•

אנלוגיות2•

יציאות

דיגיטליות16•

אנלוגיות2•

:כניסות

דיגיטליות16•

:יציאות

דיגיטליות16•

כניסות

דיגיטליות16•

:יציאות

דיגיטליות16•

#URscript ApiC#Cשפת תכנות

Communication

• Communication with UR3E robotic arm is possible over multiple channels

• In the first phase (our project), we chose to implement communication on both primary and secondary ports

with a slow frequency

• To effectively control the arm in a closed loop, future phases shall implement communication on the high

frequency ports

Python Implementation

• Implementation is via OOP in Python language

• Classes simplify programming of the robot

• Point Class

•Defines 6 DOF in Joint space

•Enables user to easily create a new Point, modify/increase/decrease its values

•Automatically checks validity of values before sending to the robotic arm

•Enables user to work in both radians and degrees

Python Implementation

• Robot Class

•Wraps the communication with the robotic arm in an easy-to-use package

•User can change the payload of the arm and open/close connection manually with a single line of code.

•The method get_point_from_freedrive enables the user to move the arm to a position he desires and

create a Point object with the exact coordinates

•Movej method moves the arm to a Point at a desired time or velocity

Results

• Up and running robotic arm system

• Throw and catch a ball - controlled by computer

• Receive feedback of joint position on secondary port

• Open-loop methodology  motions took trial & error

Future

• Sensors will give feedback on ball location

• Closed loop control will allow for noise and non-ideal conditions

Demonstration and Questions

Thank you

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

