Joint Source–Channel Coding Under an Input Energy Constraint

Omri Lev

Joint work with Anatoly Khina

Dept. EE-Systems, Tel Aviv University, Tel Aviv, Israel

IT Seminar November, 2021

Model Mo

Model Scenarios

JSCC Over AWGN With Unlimited Bandwidth

Source: $x^k \in \mathbb{R}^k$ —i.i.d. entries with density $f_x(a)$

Transmitter: $s_{x^k}(t)$

• Input energy constraint $E: \int_{-\frac{kT}{2}}^{\frac{kT}{2}} |s_{x^k}(t)|^2 dt \leq kE, \quad \forall x^k$

Channel: $r(t) = s_{x^k}(t) + n(t)$

• n continuous-time AWGN with two-sided spectral density N/2

• Power limited regime: $C = \frac{PT}{N} = \frac{E}{N} \triangleq ENR$

What is the minimum distortion $D \triangleq \frac{1}{k} \mathbb{E} \left[\left\| x^k - \hat{x}^k \right\|^2 \right]$?

Model

Model Scenarios

JSCC Over AWGN With Unlimited Bandwidth

	Infinite blocklength	Finite blocklength
Known ENR	[Shannon '59]	[Burnashev '84, '86]
		[Sevinç and Tuncel '16]
Unknown ENR	[Koken–Tuncel '17]	?
	[Baniasadi–Tuncel '20]	

Known ENR

- Both the transmitter and the receiver know the exact ENR
- The signal s_{x^k} may be optimized for the true ENR value
- This work: scalar source (k = 1)

Unknown ENR

- Only the receiver knows the ENR
- The transmitter accommodate for multiple noise levels

Part I

Known ENR

Infinite Blocklength $(k \rightarrow \infty)$

Outer Bound — Separation [Shannon '59]

• The optimal distortion:

$$\begin{split} h(x) &- \frac{1}{2} \log(2\pi eD) \leqslant R(D) \leqslant C = WT \cdot \log\left(1 + \frac{P}{N \cdot W}\right) \\ \bullet \lim_{W \to \infty} WT \cdot \log\left(1 + \frac{P}{N \cdot W}\right) = \frac{PT}{N} \triangleq \text{ENR} \\ D_{\infty}^* \geqslant \frac{e^{2h(x)}}{2\pi e} e^{-2\text{ENR}} \end{split}$$

- Tight for $k \to \infty$, Gaussian source and known ENR
- Cannot be attained for finite blocklength [Gastpar '03]

Achievability — Random Coding

- Separation-based random coding
- Achieves D^*_{∞} for $k \to \infty$

Scalar Source (k = 1)

۲

Scalar Source Bound [Burnashev '84, '86]

For
$$k = 1$$
:
 $D^* \ge K_1 \cdot e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-K_2} \cdot \{1 + o(1)\}$

- Exact constants K_1 and K_2 are unknown
- Exponentially tight

Scalar Source — Linear Transmission

• Linear transmission, receiver employs LMMSE

$$s_{x}(t) = \sqrt{E} \frac{x}{\sigma_{x}} \varphi(t),$$
$$y = \int_{-\frac{T}{2}}^{\frac{T}{2}} \varphi(t) r(t) dt,$$

$$\hat{x} = \alpha_{\text{MMSE}} \cdot y$$

- The distortion is bounded by $\frac{\sigma_x^2}{1+2\text{ENR}}$
 - Decays linearly instead of exponentially

Scalar Source (k = 1)

Closing the Gap — Channel Coding [Burnashev '84, '86]

- **Q**uantize the source using uniform scalar quantization
- 2 Transmit with orthogonal signaling (capacity achieving)
 - $s_i(t)$ is the i'th basis function of an orthogonal basis of size N

Scalar quantization-orthogonal modulation scheme:

Known ENR – Achievability Bounds

Performance

• Distortion is upper bounded by:

$$D \leq K \cdot e^{-\frac{\mathrm{ENR}}{3}} \cdot \{1 + o(1)\}$$

• Achieves the exponential rate of the outer bound

• Is $K_2 = 0$ optimal?

• The constant K can be optimized by the usage of non-uniform quantizer [Sevinç and Tuncel '16]

Disadvantages

- Separation:
 - **①** Fails to attain the next decaying order of $\text{ENR}^{-\kappa_2}$
 - 2 Saturates for high ENRs
- Scalar quantization is sub-optimal!
 - Quantization \longrightarrow finite set of channel inputs
 - Close values mapped to same quantization bin (transmitter-side "hard-decision")
 - Correct channel decoding—quantization dictates performance

Background Analog PPM Summary

Infinite Blocklength Scalar Source

Known ENR – Achievability Bounds

Idea: JSCC instead of quantization and channel coding

Scheme

Analog PPM

- $\bullet\,$ Transmit a rectangular pulse with width $1/\beta\,$
- Pulse delay = current source realization
 - No quantization fully analog transmission
- Estimate delay using Maximum A-Posteriori (MAP) estimator

JSCC using analog PPM scheme:

- $\lambda(a) = \frac{2\sqrt{E}}{N} \int_{-\infty}^{\infty} r(t)\phi(t a\Delta)dt + \log(f_x(a))$
- $f_x(a)$ the source density
- ϕ can be optimized—rectangular pulse allows analytical analysis

Analog PPM

JSCC using analog PPM scheme:

Key properties

- No quantization direct mapping of source to channel inputs
- Distinction between close source values (transmitter-side "soft-decision")
- Small noise values small distortion

Analog PPM

Delay Estimation

- Analog PPM hinges on delay estimation of known pulse corrupted by AWGN
 - Fundamental problem in signal processing and radar
 - Received much attention over the years closed-form distortion expressions remain an open problem

Analysis

- Analysis based on properties of Wiener processes:
 - **1** Split to large and small errors:

$$\mathbb{E}\left[\epsilon^{2}\right] \leq \mathbb{E}\left[\epsilon^{2} \left|\left|\epsilon\right| \leq \frac{1}{\beta}\right] + P\left(\left|\epsilon\right| > \frac{1}{\beta}\right) \mathbb{E}\left[\epsilon^{2} \left|\left|\epsilon\right| > \frac{1}{\beta}\right]\right]$$
$$\triangleq D_{S} + P_{L}D_{L}$$

- Small errors: second moment of the argmax of a Wiener process with drift [Zehavi '84]
- Large errors: probability of error for orthogonal signals with unequal prior [Ziv and Zakai '69]

Analog PPM—Uniform Source

Proposition: Uniform Source Performance

$$D \leq D_S + D_L P_L$$

•
$$D_S \triangleq \frac{13/8}{(\beta \in NR)^2} \cdot \{1 + o(1)\}$$

• $D_L \triangleq \frac{1}{6} \left(1 + \frac{2}{\beta} + \frac{4}{\beta^2}\right)$
• $P_L \triangleq \frac{\beta \sqrt{ENR}e^{-\frac{ENR}{2}}}{16\sqrt{\pi}} \cdot \{1 + o(1)\}$

Theorem: Upper Bound on Optimal Distortion

• Setting
$$\beta = (312\sqrt{\pi})^{\frac{1}{3}} \, (\text{ENR})^{-\frac{5}{6}} \, \mathrm{e}^{\frac{\text{ENR}}{6}}$$
 yields

$$D \leq 0.072 \,\mathrm{e}^{-rac{\mathrm{ENR}}{3}} \cdot \mathrm{ENR}^{-rac{1}{3}} \cdot \{1 + o(1)\}$$

Analog PPM—Gaussian Source

Proposition: Gaussian Source Performance

$$D \leq D_S + D_L$$

•
$$D_S \triangleq \frac{13/8}{(\beta \text{ENR})^2} \cdot \{1 + o(1)\}$$

• $D_L \triangleq 2\beta \sqrt{\text{ENR}} \cdot e^{-\frac{\text{ENR}}{2}} \cdot \{1 + o(1)\}$

Theorem: Upper Bound on Optimal Distortion

• Setting
$$\beta = \left(\frac{13}{8}\right)^{\frac{1}{3}} (ENR)^{-\frac{5}{6}} e^{\frac{ENR}{6}}$$
 yields

$$D \leq 3 \cdot \left(\frac{13}{8}\right)^{\frac{1}{3}} e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-\frac{1}{3}} \cdot \{1 + o(1)\}$$

Numerical Evaluation

- Numerical optimization of the empirical performance and the complete bounds
- Comparison to Burnashev and Sevinç-Tuncel performance

Analog PPM—Robustness

"Why Analog PPM is good for Unknown ENR"

ENR Robustness

For $ENR > ENR_0$, the term $D_L P_L$ is negligible:

$$D \simeq \frac{13/8}{\left(\beta \text{ENR}\right)^2}$$

• $ENR > ENR_0$ — quadratic decay

Known ENR Summary

Summary

- Separation based schemes:
 - Does not achieve additional polynomial decay
 - 2 Does not improve for $ENR > ENR_0$
- We circumvent those drawbacks by using analog JSCC
 - Achieves both exponential and *polynomial* decay terms—Settles an open problem about the gap between Burnashev's bounds
 - 2 Improves quadratically for $\mathrm{ENR} > \mathrm{ENR}_0$

Limitations

- β can be optimized only for specific ENR
- For constant β , the distortion decays quadratically

Part II

Unknown ENR

Regime Results MLM

Unknown ENR Regime

Reminder

- Now, only the receiver knows the noise level N
- The transmitter accommodate for multiple noise levels
- Main goal: minimum energy to achieve

 $D \leqslant \sigma_{x}^{2} \mathscr{F}(N), \forall N \ge 0$

We concentrate on polynomial profiles:

$$\mathscr{F}(N) \triangleq rac{1}{1 + \left(rac{\tilde{E}}{N}
ight)^{L}}, \tilde{E} \in \mathbb{R}^{+}$$

- Scenario received much attention in the finite bandwidth case [Mittal-Phamdo '02], [Reznic-Feder-Zamir '06], [Santhi-Vardy '06], [Bhattad-Narayanan '10]
- Results for the infinite bandwidth scenario attained recently [Köken–Tuncel '17], [Baniasadi–Tuncel '20]

Outer Bounds

Polynomially Decay Profile

• Separation based bound [Baniasadi-Tuncel '20]:

$$E_{\min}\left(L=2
ight)\geqslant0.804 ilde{E}$$

- Improved family of bounds: utilize the connection between robust transmission and the broadcast channel [Reznic–Feder–Zamir '06], [Köken–Tuncel '17], [Baniasadi–Tuncel '20]
- Best known bound [Baniasadi-Tuncel '20]:

$$E \ge E_{\min} (L=2) \cong 0.905 \tilde{E}$$

Exponentially Decay Profile [Köken–Tuncel '17]

• Exponentially decay profile: $E_{\min} \rightarrow \infty$

Regime Results MLM

Achievability: Hybrid Digital-Analog Schemes

Layered Transmission AWGN With $W \rightarrow \infty$ [Köken–Tuncel '17]

- Transmitter:
 - Uncoded transmission: $Y_0 = \sqrt{E_0}X + N_0$
 - Digital transmission: $S_{k}=Q\left(e_{k}
 ight),e_{k}=S_{k-1}-Q\left(S_{k-1}
 ight)$
- Receiver:
 - **1** Digital: Decodes $\{S_k\}_{k=1}^{\ell}$, ℓ is determined from noise level
 - 2 Analog: Estimates \hat{e}_{ℓ} from $\left\{\hat{S}_{k}\right\}_{k=1}^{\ell}$ and Y_{0} , to generate \hat{X}
- Total energy: $E_{\min} \cong 3.184 \tilde{E}$

Multiple Uncoded Transmissions [Baniasadi-Tuncel '20]

- Combining multiple uncoded transmissions
- Minimal achievable energy: $E_{\min} \cong 2.32 \tilde{E}$

Achievability: Hybrid Digital-Analog Schemes

Drawbacks

- Performance saturation:
 - Quantization does not improve with ENR
 - Uncoded transmissions—improve only *linearly*
- Linear transmission—inefficient use of BW

Finite BW: Modulo-lattice modulation (MLM) [Reznic–Feder–Zamir '06]

Modulo-based Wyner-Ziv coding outperforms success. refinement.

Our Approach: Two improvements

 Use MLM in infinite BW setting: All layers designed for ENR < True ENR, improve with ENR

 Replace linear transmissions with analog PPM: Better utilization of BW Background Scheme Performance Summary Q&A

Regime Results MLM

Modulo Lattice Modulation (MLM)

MLM

• Source comprises of known (j^k) and unknown (q^k) parts $\label{eq:comprises} x^k = q^k + j^k$

Transmitted over an additive channel:

$$y^{k} = m^{k}\left(x^{k}\right) + z^{k}, \ \frac{\frac{1}{k}\mathbb{E}\left[\left\|m^{k}\right\|^{2}\right]}{\sigma_{z}^{2}} \triangleq \mathrm{SNR}$$

Transmitter:

$$m^k = [\eta x^k + d^k]_{\Lambda}$$

• $d^k \sim \text{Unif}(\mathscr{V}_0)$, dither signal

• Receiver:

$$\begin{split} \tilde{y}^{k} &= [\alpha_{c}y^{k} - \eta j^{k} - d^{k}]_{\Lambda} = [\eta q^{k} + z^{k}_{\text{eff}}]_{\Lambda}, \\ \hat{x}^{k} &= \frac{\alpha_{s}}{\eta} \tilde{y}^{k} + j^{k} \end{split}$$

Background Scheme Performance Summary Q&A Regime Results MLM

Modulo-Lattice Modulation (MLM)

MLM Performance [Kochman Zamir '09, Ordentlich Erez '16]

Let q^k and z^k be semi norm-ergodic sequences. Then, $D \leqslant \frac{\sigma_q^2}{1 + \text{SNR}} \triangleq D^*$

• Semi norm-ergodic: $\Pr\left(a^k \notin \mathscr{B}\left(0, \sqrt{(1+\delta) k\sigma_a}\right)\right) \leqslant \epsilon$

Universality [Kochman-Zamir '09, Ordentlich-Erez '16]

• SNR
$$\geq$$
 SNR₀, $\sigma_q^2 \leq \tilde{\sigma}_q^2$

• Tx oblivious of SNR and σ_q^2 , knows SNR₀ and $\tilde{\sigma}_q^2$

$$D \leqslant \min\left\{\frac{\sigma_q^2}{1 + \text{SNR}_0}, \frac{\tilde{\sigma}_q^2}{1 + \text{SNR}} \cdot \frac{1 + \text{SNR}_0}{\text{SNR}_0}\right\}$$

For SNR \geq SNR₀ $\gg 1$: $D \rightarrow \frac{\sigma_q^2}{1 + \text{SNR}} = D^*$

M-Layer Transmitter

"Black-box" approach:

- Generate set of "layers" using modulo-encoding (MLM)
- Transmit independently using scalar JSCC scheme

M Layer Transmitter:

Equivalent Channel

- MLM operates over the channel $m_i^k \to \hat{m}_i^k$
 - Equivalent noise is JSCC output noise
 - 2 Noise not necessarily Gaussian

M-Layer Transmitter

M-Layer Transmitter

Transmitter:

• MLM part: Generates the set of signals

$$m_i^k = [\eta_i x^k + d_i^k]_{\Lambda}, \quad i = 1, \dots, M$$

- JSCC part:
 - **①** Transmits the entries of x^k using linear transmission
 - 2 Transmits the entries of m_i^k using scalar JSCC scheme with E_i

Receiver: For $i = 1, \ldots, M$

- JSCC part: Generates \hat{m}_i^k using the JSCC receiver
- MLM part: Uses the MLM receiver over the channel $m_i^k \rightarrow \hat{m}_i^k$ with \hat{x}_{i-1}^k as SI, to generate \hat{x}_i^k

M-Layer Transmitter: Remarks

Interleaving

- Interleaving is used between MLM and JSCC steps
 - Receiver applies de-interleaving between JSCC and MLM
- Ensures independence between vector entries
- Allows to use MLM results for semi norm-ergodic variables

Gaussianization [AMIMON '07, No-Weissman '16, Erez-Hadad '16]

- PPM inputs multiplied by orthogonal matrix
- Allows to use analysis of JSCC with Gaussian inputs
- Receiver multiplies by $H^{-1} = H^T$ —Gaussianizes the noise
- Dimension k is general—closed form solutions only for $k \to \infty$

Linear PPM Scalar

M-Layer Transmitter: Linear

M-Layer Transmitter: Linear Transmissions

Let $L > 1, \tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E > \delta_{\text{lin}} (L) \tilde{E},$

where

$$\begin{split} \delta_{\text{lin}}\left(\mathcal{L}\right) &\triangleq \frac{1}{2} \cdot \min_{(\alpha, x) \in \mathbb{R}^2_+} \left\{ \left(\frac{\mathrm{e}^{\alpha}}{x}\right)^{\mathcal{L}-1} \right. \\ &+ \frac{x}{2} \left(\mathrm{e}^{\alpha \mathcal{L}} - 1\right) \left(1 + \sqrt{1 + \frac{4\mathrm{e}^{\alpha(\mathcal{L}+1)}}{\left(1 - \mathrm{e}^{\alpha \mathcal{L}}\right)^2}}\right) \frac{\mathrm{e}^{-2\alpha}}{1 - \mathrm{e}^{-\alpha}} \right\} \end{split}$$

• For L = 2, we get $E > 2.167 \tilde{E}$

- 2 Achieved only by MLM (no PPM yet)

Background Scheme Performance Summary Q&A Linear PPM Scalar

M-Layer Transmitter: PPM

M-Layer Transmitter: PPM Transmissions

Let $L = 2, \tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E > 1.961\tilde{E},$

- Offers further improvement over linear-based transmitter
- PPM bounds are not tight—improvement is even higher

Background Scheme Performance Summary Q&A Linear PPM Scalar

M-Layer Transmitter: Scalar

- Numerical simulation of uniform source with k = 1
- Quadratic profile

- Scheme applies for practical low-delay scenario
 - PPM allows saving of transmitted energy

Unknown ENR Summary

Summary

- We introduced robust energy-efficient communication scheme
 - Based on MLM and JSCC
 - Analog PPM offers performance boost
- Total energy is lower than best reported results
 - Real improvement is even higher than theoretical bounds
- Scheme can be used in practical low-delay scenarios

Future Research

Known ENR

- Optimal polynomial decay:
 - Burnashev's bound: $K_1 = K_2$
 - MAP estimator is sub-optimal [Ibragimov–Khas'minskii '75]: Analysis of full MMSE decoder
- Vector sources: multidimensional mappings

Unknown ENR

- Tightening bounds:
 - Analysis of inner-bound can be improved
 - 2 Different line of works: outer bound
- Universal SI at the receiver
- Dual problem: near-zero bandwidth [Baniasadi-Tuncel '20]

Questions?