Joint Source–Channel Coding Under an Input Energy Constraint

Omri Lev

Joint work with Anatoly Khina

Dept. EE–Systems, Tel Aviv University, Tel Aviv, Israel

IT Seminar
November, 2021
JSCC Over AWGN With Unlimited Bandwidth

Source: $x^k \in \mathbb{R}^k$—i.i.d. entries with density $f_x(a)$

Transmitter: $s_{x^k}(t)$
- Input energy constraint E: $\int_{-kT/2}^{kT/2} |s_{x^k}(t)|^2 \, dt \leq kE, \quad \forall x^k$

Channel: $r(t) = s_{x^k}(t) + n(t)$
- n continuous-time AWGN with two-sided spectral density $N/2$

Power limited regime: $C = \frac{PT}{N} = \frac{E}{N} \triangleq$ ENR

What is the minimum distortion $D \triangleq \frac{1}{k} \mathbb{E} \left[\|x^k - \hat{x}^k\|^2 \right]$?
JSCC Over AWGN With Unlimited Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>Infinite blocklength</th>
<th>Finite blocklength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known ENR</td>
<td>[Shannon '59]</td>
<td>[Burnashev '84, '86]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Sevinç and Tuncel '16]</td>
</tr>
<tr>
<td>Unknown ENR</td>
<td>[Koken–Tuncel '17]</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>[Baniasadi–Tuncel '20]</td>
<td></td>
</tr>
</tbody>
</table>

Known ENR
- Both the transmitter and the receiver know the exact ENR
- The signal s_{x^k} may be optimized for the true ENR value
- This work: scalar source ($k = 1$)

Unknown ENR
- Only the receiver knows the ENR
- The transmitter accommodate for multiple noise levels
Part I

Known ENR
Infinite Blocklength \((k \to \infty) \)

Outer Bound — Separation [Shannon ’59]

- The optimal distortion:

\[
h(x) - \frac{1}{2} \log(2\pi e D) \leq R(D) \leq C = WT \cdot \log \left(1 + \frac{P}{N \cdot W}\right)
\]

\[
\lim_{W \to \infty} WT \cdot \log \left(1 + \frac{P}{N \cdot W}\right) = \frac{PT}{N} \triangleq \text{ENR}
\]

\[
D_\infty^* \geq \frac{e^{2h(x)}}{2\pi e} e^{-2\text{ENR}}
\]

- Tight for \(k \to \infty \), Gaussian source and known ENR

- Cannot be attained for finite blocklength [Gastpar ’03]

Achievability — Random Coding

- Separation-based random coding

- Achieves \(D_\infty^* \) for \(k \to \infty \)
Scalar Source \((k = 1)\)

Scalar Source Bound \([\text{Burnashev '84, '86}]\)

- For \(k = 1\):
 \[
 D^* \geq K_1 \cdot e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-K_2} \cdot \{1 + o(1)\}
 \]
- Exact constants \(K_1\) and \(K_2\) are unknown
- **Exponentially tight**

Scalar Source — Linear Transmission

- Linear transmission, receiver employs LMMSE

 \[
 s_x(t) = \sqrt{E} \frac{x}{\sigma_x} \varphi(t),
 \]
 \[
 y = \int_{-\frac{T}{2}}^{\frac{T}{2}} \varphi(t) r(t) dt,
 \]
 \[
 \hat{x} = \alpha_{\text{MMSE}} \cdot y
 \]
- The distortion is bounded by \(\frac{\sigma_x^2}{1+2\text{ENR}}\)
 - Decays **linearly** instead of **exponentially**

Omri Lev

JSCC Under an Input Energy Constraint
Scalar Source ($k = 1$)

Closing the Gap — Channel Coding [Burnashev ’84, ’86]

1. Quantize the source using uniform scalar quantization
2. Transmit with orthogonal signaling (capacity achieving)
 - $s_i(t)$ is the i'th basis function of an orthogonal basis of size N

Scalar quantization—orthogonal modulation scheme:

![Diagram of scalar quantization and orthogonal modulation](image)

- Quantization ($Q()$)
- Orthogonal Signaling
- Additive White Gaussian Noise ($n(t)$)
- Transmission ($s_i(t)$)
- Additive White Gaussian Noise ($r(t)$)
- Maximum Likelihood Decoding (\hat{i})
- Dequantization ($Q^{-1}()$)
- Estimate (\hat{x})

Figure: $x = 0.11$, $i = 0$

Figure: $x = 0.3$, $i = 1$
Known ENR – Achievability Bounds

Performance
- Distortion is upper bounded by:
 \[D \leq K \cdot e^{-\frac{\text{ENR}}{3}} \cdot \{1 + o(1)\} \]
- Achieves the exponential rate of the outer bound
- \textbf{Is } K_2 = 0 \textbf{ optimal?}
- The constant } K \text{ can be optimized by the usage of non-uniform quantizer [Sevinç and Tuncel ’16]

Disadvantages
- \textbf{Separation:}
 1. Fails to attain the next decaying order of } \text{ENR}^{-K_2}
 2. Saturates for high ENRs
- \textbf{Scalar quantization is sub-optimal!}
 - Quantization \rightarrow \text{finite set of channel inputs}
 - Close values mapped to same quantization bin
 (transmitter-side “hard-decision”)
 - Correct channel decoding—quantization dictates performance
Known ENR – Achievability Bounds

Idea: JSCC instead of quantization and channel coding
Analog PPM

- Transmit a rectangular pulse with width $1/\beta$
- Pulse delay = current source realization
- No quantization — fully analog transmission
- Estimate delay using Maximum A-Posteriori (MAP) estimator

JSCC using analog PPM scheme:

$$\lambda(a) = \frac{2\sqrt{E}}{N} \int_{-\infty}^{\infty} r(t) \phi(t - a\Delta) dt + \log(f_x(a))$$

- $f_x(a)$ — the source density
- ϕ can be optimized—rectangular pulse allows analytical analysis
Analog PPM

JSCC using analog PPM scheme:

\[
x \rightarrow \text{Transmitter} \rightarrow \sqrt{E_{\phi}(t - x \Delta)} \rightarrow \text{Receiver} \rightarrow r(t) = \hat{x} = \arg\max_{a \in \mathbb{R}} \{\lambda(a)\}
\]

- **Key properties**
 - No quantization — direct mapping of source to channel inputs
 - Distinction between close source values (transmitter-side “soft-decision”)
 - Small noise values — small distortion

Schematic diagram

- Transmitter: \(x \)
- Receiver: \(\hat{x} \)
- Noise: \(n(t) \)
- Output: \(r(t) \)

Graphs

- 0.5 - 0.5
- 0 - 0.5
- 0.05
- 0.1
- 0.15
- 0.2
- 0.25
- 0.3
- 0.35
- 0.4
- 0.45
- 0.5

Equations

- Transmitter: \(\sqrt{E_{\phi}(t - x \Delta)} \)
- Receiver: \(\hat{x} = \arg\max_{a \in \mathbb{R}} \{\lambda(a)\} \)
Analog PPM hinges on delay estimation of known pulse corrupted by AWGN.

1. Fundamental problem in signal processing and radar
2. Received much attention over the years — closed-form distortion expressions remain an open problem

Analysis

Analysis based on properties of Wiener processes:

1. Split to large and small errors:

 \[E[\epsilon^2] \leq E[\epsilon^2| |\epsilon| \leq \frac{1}{\beta}] + P\left(|\epsilon| > \frac{1}{\beta}\right)E[\epsilon^2| |\epsilon| > \frac{1}{\beta}] \]

 \[\triangleq D_S + P_LD_L \]

2. Small errors: second moment of the argmax of a Wiener process with drift [Zehavi '84]
3. Large errors: probability of error for orthogonal signals with unequal prior [Ziv and Zakai '69]
Proposition: Uniform Source Performance

\[D \leq D_S + D_L P_L \]

- \(D_S \triangleq \frac{13/8}{(\beta \text{ENR})^2} \cdot \{1 + o(1)\} \)
- \(D_L \triangleq \frac{1}{6} \left(1 + \frac{2}{\beta} + \frac{4}{\beta^2} \right) \)
- \(P_L \triangleq \frac{\beta \sqrt{\text{ENR}} e^{-\frac{\text{ENR}}{2}}}{16 \sqrt{\pi}} \cdot \{1 + o(1)\} \)

Theorem: Upper Bound on Optimal Distortion

Setting \(\beta = (312 \sqrt{\pi})^{\frac{1}{3}} (\text{ENR})^{-\frac{5}{6}} e^{\frac{\text{ENR}}{6}} \) yields

\[D \leq 0.072 e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-\frac{1}{3}} \cdot \{1 + o(1)\} \]
Proposition: Gaussian Source Performance

\[D \leq D_S + D_L \]

- \(D_S \triangleq \frac{13/8}{(\beta \text{ENR})^2} \cdot \{1 + o(1)\} \)
- \(D_L \triangleq 2\beta \sqrt{\text{ENR}} \cdot e^{-\frac{\text{ENR}}{2}} \cdot \{1 + o(1)\} \)

Theorem: Upper Bound on Optimal Distortion

Setting \(\beta = \left(\frac{13}{8} \right)^{\frac{1}{3}} (\text{ENR})^{-\frac{5}{6}} e^{\frac{\text{ENR}}{6}} \) yields

\[D \leq 3 \cdot \left(\frac{13}{8} \right)^{\frac{1}{3}} e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-\frac{1}{3}} \cdot \{1 + o(1)\} \]
Numerical Evaluation

- Numerical optimization of the empirical performance and the complete bounds
- Comparison to Burnashev and Sevinç–Tuncel performance

Figure: Gaussian source SDR

Figure: Uniform source SDR
Analog PPM—Robustness

“Why Analog PPM is good for Unknown ENR”

ENR Robustness

For $\text{ENR} > \text{ENR}_0$, the term $D_L P_L$ is negligible:

$$D \simeq \frac{13/8}{(\beta \text{ENR})^2}$$

$\text{ENR} > \text{ENR}_0$ — quadratic decay

Figure: Gaussian source, $\beta = 3.68$
Known ENR Summary

Summary

- Separation based schemes:
 1. Does not achieve additional polynomial decay
 2. Does not improve for $\text{ENR} > \text{ENR}_0$

- We circumvent those drawbacks by using analog JSCC
 1. Achieves both exponential and polynomial decay terms—\textbf{Settles an open problem about the gap between Burnashev’s bounds}
 2. Improves quadratically for $\text{ENR} > \text{ENR}_0$

Limitations

- β can be optimized only for specific ENR
- For constant β, the distortion decays quadratically
Part II

Unknown ENR
Reminder

- Now, only the receiver knows the noise level N
- The transmitter accommodate for multiple noise levels

Main goal: minimum energy to achieve

$$D \leq \sigma^2_x \mathcal{F}(N), \forall N \geq 0$$

We concentrate on polynomial profiles:

$$\mathcal{F}(N) = \frac{1}{1 + \left(\frac{\tilde{E}}{N} \right)^L}, \tilde{E} \in \mathbb{R}^+$$

- Scenario received much attention in the finite bandwidth case
 [Mittal–Phamdo ‘02], [Reznic–Feder–Zamir ‘06],
 [Santhi–Vardy ‘06], [Bhattad–Narayanan ’10]
- Results for the infinite bandwidth scenario attained recently
 [Köken–Tuncel ’17], [Baniasadi–Tuncel ’20]
Outer Bounds

Polynomially Decay Profile

- Separation based bound [Baniasadi–Tuncel ’20]:
 \[E_{\text{min}} (L = 2) \geq 0.804 \tilde{E} \]

- Improved family of bounds: utilize the connection between robust transmission and the broadcast channel
 [Reznic–Feder–Zamir ’06], [Köken–Tuncel ’17],
 [Baniasadi–Tuncel ’20]

- Best known bound [Baniasadi–Tuncel ’20]:
 \[E \geq E_{\text{min}} (L = 2) \approx 0.905 \tilde{E} \]

Exponentially Decay Profile [Köken–Tuncel ’17]

- Exponentially decay profile: \[E_{\text{min}} \to \infty \]
Achievability: Hybrid Digital–Analog Schemes

Layered Transmission AWGN With $W \rightarrow \infty$ [Köken–Tuncel ’17]

- **Transmitter:**
 - Uncoded transmission: $Y_0 = \sqrt{E_0}X + N_0$
 - Digital transmission: $S_k = Q(e_k), e_k = S_{k-1} - Q(S_{k-1})$

- **Receiver:**
 1. Digital: Decodes $\{S_k\}_{k=1}^{\ell}, \ell$ is determined from noise level
 2. Analog: Estimates \hat{e}_ℓ from $\{\hat{S}_k\}_{k=1}^{\ell}$ and Y_0, to generate \hat{X}

- Total energy: $E_{\text{min}} \approx 3.184\tilde{E}$

Multiple Uncoded Transmissions [Baniasadi–Tuncel ’20]

- Combining multiple uncoded transmissions
- Minimal achievable energy: $E_{\text{min}} \approx 2.32\tilde{E}$
Achievability: Hybrid Digital–Analog Schemes

Drawbacks

- Performance saturation:
 - Quantization does not improve with ENR
 - Uncoded transmissions—improve only linearly
- Linear transmission—inefficient use of BW

Finite BW: Modulo-lattice modulation (MLM) [Reznic–Feder–Zamir ’06]
Modulo-based Wyner–Ziv coding outperforms success refinement.

Our Approach: Two improvements

1. Use MLM in infinite BW setting:
 All layers designed for ENR < True ENR, improve with ENR

2. Replace linear transmissions with analog PPM:
 Better utilization of BW
Modulo Lattice Modulation (MLM)

- Source comprises of known \((j^k) \) and unknown \((q^k) \) parts
 \[x^k = q^k + j^k \]

 Transmitted over an additive channel:
 \[y^k = m^k \left(x^k \right) + z^k, \quad \frac{1}{k} \mathbb{E} \left[\| m^k \|^2 \right] \leq \sigma_z^2 \]

- Transmitter:
 \[m^k = [\eta x^k + d^k]_{\Lambda} \]
 \[d^k \sim \text{Unif} \left(\mathcal{V}_0 \right), \text{ dither signal} \]

- Receiver:
 \[\tilde{y}^k = [\alpha_c y^k - \eta j^k - d^k]_{\Lambda} = [\eta q^k + z_{\text{eff}}^k]_{\Lambda}, \]
 \[\hat{x}^k = \frac{\alpha_s}{\eta} \tilde{y}^k + j^k \]
Modulo-Lattice Modulation (MLM)

MLM Performance [Kochman Zamir '09, Ordentlich Erez '16]

Let q^k and z^k be semi norm-ergodic sequences. Then,

$$D \leq \frac{\sigma_q^2}{1 + \text{SNR}} \triangleq D^*$$

- Semi norm-ergodic:
 $$\Pr \left(a^k \notin \mathcal{B} \left(0, \sqrt{(1 + \delta) k\sigma_a} \right) \right) \leq \epsilon$$

Universality [Kochman–Zamir '09, Ordentlich–Erez '16]

- SNR \geq SNR$_0$, $\sigma_q^2 \leq \tilde{\sigma}_q^2$
- Tx oblivious of SNR and σ_q^2, knows SNR$_0$ and $\tilde{\sigma}_q^2$

$$D \leq \min \left\{ \frac{\sigma_q^2}{1 + \text{SNR}_0}, \frac{\tilde{\sigma}_q^2}{1 + \text{SNR}} \cdot \frac{1 + \text{SNR}_0}{\text{SNR}_0} \right\}$$

- For SNR \geq SNR$_0 \gg 1$: $D \to \frac{\sigma_q^2}{1 + \text{SNR}} = D^*$
M-Layer Transmitter

“Black-box” approach:
- Generate set of “layers” using modulo-encoding (MLM)
- Transmit independently using scalar JSCC scheme

M Layer Transmitter:

- **MLM Tx**
- **JSCC Encoding**
- **JSCC Estimation**
- **MLM Rx**

Equivalent Channel:
- MLM operates over the channel $m_i^k \rightarrow \hat{m}_i^k$
 1. Equivalent noise is JSCC output noise
 2. Noise not necessarily Gaussian
M-Layer Transmitter

Transmitter:
- **MLM part:** Generates the set of signals
 \[m_i^k = [\eta_i x^k + d_i^k]_{\Lambda}, \quad i = 1, \ldots, M \]
- **JSCC part:**
 1. Transmits the entries of \(x^k\) using linear transmission
 2. Transmits the entries of \(m_i^k\) using scalar JSCC scheme with \(E_i\)

Receiver: For \(i = 1, \ldots, M\)
- **JSCC part:** Generates \(\hat{m}_i^k\) using the JSCC receiver
- **MLM part:** Uses the MLM receiver over the channel
 \(m_i^k \rightarrow \hat{m}_i^k\) with \(\hat{x}_{i-1}^k\) as SI, to generate \(\hat{x}_i^k\)
Interleaving

- Interleaving is used between MLM and JSCC steps
- Receiver applies de-interleaving between JSCC and MLM
- Ensures independence between vector entries
- Allows to use MLM results for semi norm-ergodic variables

Gaussianization [AMIMON ’07, No–Weissman ’16, Erez–Hadad ’16]

- PPM inputs multiplied by orthogonal matrix
- Allows to use analysis of JSCC with Gaussian inputs
- Receiver multiplies by $H^{-1} = H^T$—Gaussianizes the noise

- Dimension k is general—closed form solutions only for $k \to \infty$
Let $L > 1$, $\tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies

$$E > \delta_{\text{lin}}(L) \tilde{E},$$

where

$$\delta_{\text{lin}}(L) = \frac{1}{2} \cdot \min_{(\alpha,x) \in \mathbb{R}^2_+} \left\{ \left(\frac{e^{\alpha}}{x} \right)^{L-1} + \frac{x}{2} \left(e^{\alpha L} - 1 \right) \left(1 + \sqrt{1 + \frac{4e^{\alpha(L+1)}}{(1 - e^{\alpha L})^2}} \right) \frac{e^{-2\alpha}}{1 - e^{-\alpha}} \right\}.$$

- For $L = 2$, we get $E > 2.167\tilde{E}$
- Better than $2.32\tilde{E}$ of other schemes
- Achieved only by MLM (no PPM yet)
M-Layer Transmitter: PPM Transmissions

Let $L = 2$, $\tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E > 1.961\tilde{E}$.

- Offers further improvement over linear-based transmitter
- PPM bounds are not tight—improvement is even higher

Figure: Distortion

Figure: Accumulated Energy

Omri Lev
JSCC Under an Input Energy Constraint
M-Layer Transmitter: Scalar

- Numerical simulation of uniform source with $k = 1$
- Quadratic profile

Scheme applies for practical low-delay scenario
- PPM allows saving of transmitted energy

Figure: Distortion

Figure: Accumulated Energy
We introduced robust energy-efficient communication scheme

1. Based on MLM and JSCC
2. Analog PPM offers performance boost

Total energy is lower than best reported results
- Real improvement is even higher than theoretical bounds

Scheme can be used in practical low-delay scenarios
Future Research

Known ENR
- Optimal polynomial decay:
 - Burnashev’s bound: $K_1 = K_2$
 - MAP estimator is sub-optimal [Ibragimov–Khas’minskii ’75]: Analysis of full MMSE decoder
- Vector sources: multidimensional mappings

Unknown ENR
- Tightening bounds:
 - Analysis of inner-bound can be improved
 - Different line of works: outer bound
- Universal SI at the receiver
- Dual problem: near-zero bandwidth [Baniasadi–Tuncel ’20]
Questions?