Universal Joint Source–Channel Coding Under an Input Energy Constraint

Omri Lev

Joint work with Anatoly Khina

Dept. EE-Systems, Tel Aviv University, Tel Aviv, Israel

International Symposium on Information Theory (ISIT) June, 2022

Model

JSCC over AWGN Channel with Unlimited Bandwidth (BW)

Source: $x^k \in \mathbb{R}^k$ —i.i.d. entries with density $f_x(a)$

Transmitter: $s_{x^k}(t)$

• Input energy constraint $E: \int_{-\frac{kT}{2}}^{\frac{kT}{2}} |s_{x^k}(t)|^2 dt \le kE, \quad \forall x^k$

Channel: $r(t) = s_{x^{k}}(t) + n(t)$

• *n*—continuous-time AWGN with power spectral density N/2

• Power limited regime $(BW \to \infty)$: $C = \frac{PT}{N} = \frac{E}{N} \triangleq ENR$

What is the minimum distortion $D \doteq \frac{1}{k} \mathbb{E} \left\| \left\| x^k - \hat{x}^k \right\|^2 \right\|$?

Model

Problem Formulation: Unknown ENR

- Only the receiver knows the noise level N
 - The transmitter accommodate for multiple noise levels
- Main goal: Design $s_{x^k}(t)$ that achieves

$$D \leqslant \sigma_x^2 \mathscr{F}(N) \,, \quad \forall N \ge 0$$

with minimum energy.

• We concentrate on polynomial profiles:

$$\mathscr{F}(N) \triangleq \frac{1}{1 + \left(\frac{\tilde{E}}{N}\right)^{L}}, \tilde{E} \in \mathbb{R}^{+}$$

• Tightest lower bound for L = 2 [Baniasadi–Tuncel '21]:

$$E \ge 0.9057\tilde{E}$$

Part I

Background

Omri Lev Universal JSCC Under an Input Energy Constraint

Hybrid Digital–Analog Schemes [Köken–Tuncel '17]

- Multiple transmission layers layer k optimized for N_k
- Receiver combines information from different layers
- k'th layer parameters and energy optimized such that

 $D(N) \leq \mathcal{F}(N), N_k < N \leq N_{k+1}$

Layered Transmission for AWGN With $W \to \infty$

- Transmitter:
 - Uncoded transmission: $Y_0 = \sqrt{E_0}X + N_0$
 - Digital transmission: $S_{k}=Q\left(e_{k}
 ight),e_{k}=S_{k-1}-Q\left(S_{k-1}
 ight)$
- Receiver:
 - Digital: Decodes $\{S_k\}_{k=1}^{\ell}$, ℓ is determined from noise level
 - 2 Analog: Estimates \hat{e}_{ℓ} from $\left\{\hat{S}_{k}\right\}_{k=1}^{\ell}$ and Y_{0} , to generate \hat{X}
- Total energy: $E_{\min} \cong 3.184\tilde{E}$

(LB: $E_{\min} \ge 0.905\tilde{E}$)

Hybrid Digital-Analog Schemes [Baniasadi-Tuncel '20]

Improvement idea

- Only the first layer improves with the ENR
- Use multiple uncoded layers to boost analog part performance

Scheme

- Transmitter:
 - Uncoded transmissions: $Y_k = \sqrt{E_k e_k} + N_k$, $e_0 = X$
 - Digital transmission: $S_{k}=Q\left(e_{k}
 ight),e_{k}=S_{k-1}-Q\left(S_{k-1}
 ight)$

Receiver:

• Digital: Decodes $\{S_k\}_{k=1}^{\ell}$, ℓ is determined from noise level

2 Analog: Estimates \hat{e}_{ℓ} from $\left\{\hat{S}_{k}, \frac{\mathbf{Y}_{k}}{\mathbf{Y}_{k}}\right\}_{k=1}^{\ell}$, to generate \hat{X}

• Total energy: $E_{\min} \cong 2.32\tilde{E} < 3.18\tilde{E}$ (LB: $E_{\min} \ge 0.905\tilde{E}$)

Hybrid Digital-Analog Schemes Limitations

Drawbacks

- Linear transmission—inefficient use of bandwidth (BW)
- Performance saturation:
 - Quantization does not improve with ENR
 - Uncoded transmissions—improve only *linearly*

Finite BW: Modulo-lattice modulation (MLM) [Reznic-Feder-Zamir '06]

Unknown ENR: Modulo-based Wyner–Ziv coding outperforms successive refinement based schemes.

Our Approach: Two improvements

- Use Modulo-based Wyner-Ziv in infinite BW setting
- **2** Replace linear transmissions with Non-linear JSCC

Part II

M-Layer Scheme

Tools Scheme Performance Summary

MLM PPM

First Ingredient: Modulo Lattice Modulation (MLM)

• Source comprises known (j^k) and unknown (q^k) parts $\label{eq:source} x^k = q^k + j^k$

nsmitted over an additive channel:

$$y^{k} = m^{k} \left(x^{k}\right) + z^{k}, \quad \frac{\frac{1}{k}\mathbb{E}\left[\left\|m^{k}\right\|^{2}\right]}{\sigma_{z}^{2}} \triangleq \text{SNR}$$

• Transmitter:

Tra

$$m^k = [\eta x^k + d^k]_{\Lambda}$$

• $d^k \sim \text{Unif}(\mathscr{V}_0)$, dither signal

• Receiver:

$$\begin{split} \tilde{y}^{k} &= [\alpha_{c}y^{k} - \eta j^{k} - d^{k}]_{\Lambda} = [\eta q^{k} + z_{\text{eff}}^{k}]_{\Lambda}, \\ \hat{x}^{k} &= \frac{\alpha_{s}}{\eta} \tilde{y}^{k} + j^{k} \end{split}$$

Tools Scheme Performance Summary

MLM PPM

First Ingredient: Modulo-Lattice Modulation (MLM)

MLM Performance [Reznic et al. '06, Kochman–Zamir '09, Ordentlich–Erez '16]

Let q^k and z^k be semi norm-ergodic sequences. Then,

$$D \leq rac{\sigma_q^2}{1 + \mathrm{SNR}} \triangleq D^*$$

• a^k semi norm-ergodic if: $\Pr\left(a^k \notin \mathscr{B}\left(0, \sqrt{(1+\delta) k\sigma_a}\right)\right) \leq \epsilon$

Universality [Kochman-Zamir '09, Ordentlich-Erez '16]

• SNR
$$\geq$$
 SNR₀, $\sigma_q^2 \leq \tilde{\sigma}_q^2$

۲

 $\bullet~{\rm Tx}$ oblivious of ${\rm SNR}$ and $\sigma_q^2,$ knows ${\rm SNR}_0$ and $\tilde{\sigma}_q^2$

$$D \leqslant \min\left\{\frac{\sigma_q^2}{1 + \text{SNR}_0}, \frac{\tilde{\sigma}_q^2}{1 + \text{SNR}} \cdot \frac{1 + \text{SNR}_0}{\text{SNR}_0}\right\}$$

For SNR \ge SNR₀ \gg 1: $D \rightarrow \frac{\sigma_q^2}{1 + \text{SNR}} = D^*$

Tools Scheme Performance Summary

MLM PPM

Second Ingredient: Analog PPM [Lev-Khina '21]

- $\bullet\,$ Transmit a rectangular pulse with width $1/\beta\,$
- Pulse delay = current source realization
- Estimate delay using Maximum A-Posteriori (MAP) estimator

•
$$\lambda(a) = \frac{2\sqrt{E}}{N} \int_{-\infty}^{\infty} r(t)\phi(t - a\Delta)dt + \log(f_x(a))$$

Advantages

- No quantization fully analog transmission:
 - Distinction between close source values (transmitter-side "soft-decision")
 - Small noise values small distortion

MLM PPM

Second Ingredient: Analog PPM [Lev-Khina '21]

Performance

Performance guarantees for uniform and Gaussian sources:

$$D \leqslant K_1 \cdot \mathrm{ENR}^{-K_2} \cdot e^{-\mathrm{ENR}/3}$$

- Achieves Burnashev's exponential decay
- Achieves additional polynomial decay
- Outperform other existing schemes

Robustness

- $\bullet\,$ Pulse width β optimized for specific ENR_0 point
- For ENR > ENR₀ the performance decay *quadratically* This is beneficial for universal schemes!

M-Layer Scheme

"Black-box" approach:

- Generate set of layers using modulo-encoding (MLM)
- Transmit independently using scalar JSCC scheme

Equivalent Channel

- MLM operates over the channel $m_i^k \rightarrow \hat{m}_i^k$
 - Equivalent noise is JSCC output noise
 - 2 Noise not necessarily Gaussian

M-Layer Scheme: Remarks

Interleaving

- Interleaving is used between MLM and JSCC steps
 - Receiver applies de-interleaving between JSCC and MLM
- Ensures independence between vector entries
- Allows to use MLM results for semi norm-ergodic variables

Gaussianization [AMIMON '07, No-Weissman '16, Erez-Hadad '16]

- PPM inputs multiplied by orthogonal matrix
- Allows to use analysis of JSCC with Gaussian inputs
- Receiver multiplies by $H^{-1} = H^T$ —Gaussianizes the noise
- Dimension k is general—closed form solutions for $k \to \infty$

M-Layer Scheme: Linear Layers

Performance

Let $L > 1, \tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E > \delta_{\text{lin}} (L) \tilde{E},$

where

$$\delta_{\text{lin}}(L) \triangleq \frac{1}{2} \cdot \min_{(\alpha, x) \in \mathbb{R}^2_+} \left\{ \left(\frac{e^{\alpha}}{x} \right)^{L-1} + \frac{x}{2} \left(e^{\alpha L} - 1 \right) \left(1 + \sqrt{1 + \frac{4e^{\alpha(L+1)}}{(1 - e^{\alpha L})^2}} \right) \frac{e^{-2\alpha}}{1 - e^{-\alpha}} \right\}$$
For $L = 2$, we get $E_{\min} \cong 2.16\tilde{E} < 2.32\tilde{E}$ (LB: $E_{\min} \ge 0.905\tilde{E}$)

- Outperform previous hybrid digital-analog schemes
- Achieved using MLM (no PPM yet)

Linear **PPM** Scalar

M-Layer Scheme: PPM

Performance

Let $L = 2, \tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies

 $E_{\min} \cong 1.961\tilde{E} < 2.16\tilde{E}$ (LB: $E_{\min} \ge 0.905\tilde{E}$)

• Offers further improvement over linear-based transmitter

• PPM bounds are not tight—improvement is even higher

Linear PPM Scalar

M-Layer Scheme: Scalar

- Numerical simulation of uniform source with k = 1
- Quadratic profile

- Scheme applies for practical low-delay scenario
 - PPM allows saving of transmitted energy

Summary

Summary

- We introduced robust energy-efficient communication scheme
 - Based on MLM and JSCC
 - Analog PPM offers performance boost
- Total energy is lower than best reported results
 - Real improvement is even higher than theoretical bounds
- Practical low-delay scenario simulation results presented

Future Research

- Improving the optimization can close gap to outer bound
- Different direction: improve further outer bound [Köken–Tuncel '17] [Baniasadi–Tuncel '20]
- Universal SI at the receiver [Baniasadi-Tuncel '21]
- Dual problem: near-zero bandwidth [Baniasadi-Tuncel '20]