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Cloud robots and automation systems
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Security

We need to address physical security in addition to cyber security
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News reports

Port of San Diego suffers cyber-attack,
second port in a week after Barcelona
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News reports

The Stuxnet outbreak The

A worm in the centrifuge

Economist

An unusually sophisticated cyber-weapon is mysterious but important

Computer virus Stuxnet a 'game changer,’

DHS official tells Senate CCNW'

j K“It has changed the way we view the security threat”

Symantec.
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The man 1in the middle

[ Plant ]:

A fictiious plant for
the controller

. [Controller]

A malicious controller

for the plant
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Mathematical formulation

Linear dynamical system

Xk+1 = an -+ Uk + Wk:
(W} are i.id. N(0,Var[W])

The controller, at timek, observes Y% and generates a control signal
U as a function of all past observations Ylk.

Y, = X Under normal operation

Y. = Vi Under attack

The attacker feeds a malicious mput Uy to the plant.

How can the controller detect that the system 1s under attack?
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Anomaly detection

The controller 1s armed with a detector that tests for anomalies 1n
the observed history Y*

Under legiimate system operation we expect

Yig1 —aYy, — Up(YF) ~ iid. N(0,Var[W])

The detector performs the variance test

k=1

What kind of attacks can we detect?
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The man 1n the middle attack types

Replay attack

Statistical-duplicate attack

B. Satchidanandan,
Xgr1 =aXp + U + Wi | P.R Kumar (2017)
R. S. Smuth (2011)

Learning-based attack

Xk—|—1 e an -+ Uk + Wk Z%;;l)mjaswh et al.
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[Learning-based attack

Xk+1 — an + Uk + Wk.

e The attacker has access to both X and Ui and knows the
distribution of Wp% and of the initial condition Xo, but it should learn
the open loop gain a of the plant.

e For analysis purposes, we can assume the open loop gain of the plant
is a random variable A with a distribution known to the attacker and
for any event C' we let

P,(C) = P(C|A = a).
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‘Two phases of the learning-based attack

Learning (exploration) Hyacking (exploitation)

Favesdropping and learning Hiyjacking the system
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Learning (exploration) phase

Public | Ur . X [ Public }
Channel Channel
‘ (Controller]-
U, | Y, = X

e Fork € [0, L], the attacker observes the plant state and control input,
and tries to learn the open-loop gaina.
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Hyacking (exploitation) phase

" S
: lant
{
i Viaa ZAV}C—I—U]C—FW]@

pr == .

Uy,

[Controlle } Y. =V,

e Fork =L+ 1,...,T, the attacker feeds the fake signal V. to the
controller, reads the next input Ug, and drives the system to an
undesired state by feeding U, to the plant.

MJ Khojasteh 13



Detecting the attack

Let O7 be the indicator of the attack at any time before T

The controller uses YlT to construct an estimate éT of Of

according to the variance test

Define the deception probabilities
Pa’T 2 a (é)T = O‘GT = 1)

dec
PT 2P (@)T = 0|@T = 1) = / P;éZfA(a)da

— O

Assume the power of the fictitious sensor reading converges a.s.

: 1 T 2 1
M7 o0 7 ) peraq Vi = 7 < 00
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Results

e We provide lower and upper bounds on the deception probability

 The lower bound 1s based on a given learning algorithm and holds
for any measurable control policy

* The upper bound holds for any learning algorithm, and any
measurable control policy
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Lower bound

e Assuming the attacker uses a least-square learning algorithm to learn
the plant, such that

L—-1
A Xpy1 —Up)X
A:a’rgminHXkJrl — AX: _UkH _ k:l( fji k) k
A X2
k=1 “"k

This algorithm 1s consistent, namely

~ P
A>Sa as L — o0

K. ]J. Astr('jm, P. Eykhoft (1971), LL Ljung (1982)
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Lower bound

e On the other hand, for any fixed L the deception probability
depends on the ability to learn the plant, and we can show

lim Pj,. =P, (|}i —al < \/%)

T'— 00
2

> 1 ( 146 B) L/2 Using concentration bound
of A. Rantzer 2018
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Comparison with a replay attack

——- Replay attack MJ Khojasteh et al.
—— Learning-based attack (2020)
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Upper bound on the deception probability

e If A is distributed uniformly in|[— R, R], then letting
Z¥ = (X7,UF), we have
. I(A; Z8) +1
hmT e Pdec < .
- log(1/+/375)

e The numerator represents the information revealed about A from

the observation of the random variable Z.

e The denominator represents the intrinsic uncertainty of A when it 1s
observed at resolution € = /0 corresponding to the entropy of
the quantized random variable H ( A, ).
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Upper bound on the deception probability

e Inaddition,if A — (X, 2 f _1) — U 1s a Markov chain for all
ke{l,...,L} ,then
. I(A; Z8) +1
hmT o0 Pdec g
~ log(R/+/3p)

L
- Zkle (ka|zf—1,AH@Xk|Zf—1
N log(R/+/d0)

any sequence of probability measures {@ Xy | Zk } , provided

Pyios o) +1

ka|zf—1 < @Xk|zf—1 forall ke {1,...,L}.
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The Gaussian case

 The freedom 1 choosing the auxihiary probability measure

{@ X, | ZF } make the second bound a useful bound.

e Gaussian plant disturbance W ~ N (0, Var[W])
* By choosing @XHZf—l ~ N(0,Var[W]) we have

1iInT—>oo Pdec g G(ZlL),

e S E(AX 1 + Up1)? + 1

where G(ZlL)é 207 k=1

log (RA/SP)
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Privacy-enhancing signal

Impede the learning process of the attacker

Privacy-enhancing signal

1
Up = U + 'y

-

Nominal control policy
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Privacy-enhancing signal

e Injecting a strong noise may 1n fact speed up the learning process

Ut Xk

e (Caretully crafted watermarking signals provide better guarantees
on the deception probability
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Delense against learning-based attack

Attacker's success rate
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=== Unauthenticated controller
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(2020)
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Vector systems

ZL 1 X2
A — 015 det(Gr_1) = 0;
- £=_11 ((Xk+1 - Uk)X;L) G;',, otherwise.
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Learning-based attack: vector systems

s — a2

Var s Cov
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Defense against vector learning-based attack

Attacker's success rate
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Nonlinear learning-based attack

A — f ( X : U ) & Reproducing Kernel Hilbert Space (RKHS)

Linear regression m— Bayesian learning: Gaussian processes (GP)

20
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—— Learned dynamics

B 95% confidence interval
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success rate
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