Joint Source–Channel Coding Under an Input Energy Constraint

Omri Lev

Joint work with Anatoly Khina

Dept. EE-Systems, Tel Aviv University, Tel Aviv, Israel

IT Seminar November, 2021

JSCC Over AWGN With Unlimited Bandwidth

Source: $x^k \in \mathbb{R}^k$ —i.i.d. entries with density $f_x(a)$

Transmitter: $s_{\chi^k}(t)$

• Input energy constraint $E: \int_{-\frac{kT}{2}}^{\frac{kT}{2}} |s_{x^k}(t)|^2 dt \leqslant kE, \quad \forall x^k$

Channel: $r(t) = s_{x^k}(t) + n(t)$

• n continuous-time AWGN with two-sided spectral density N/2

• Power limited regime: $C = \frac{PT}{N} = \frac{E}{N} \triangleq \text{ENR}$

What is the minimum distortion $D \triangleq \frac{1}{k} \mathbb{E} \left[\|x^k - \hat{x}^k\|^2 \right]$?

JSCC Over AWGN With Unlimited Bandwidth

	Infinite blocklength	Finite blocklength
Known ENR	[Shannon '59]	[Burnashev '84, '86]
		[Sevinç and Tuncel '16]
Unknown ENR	[Koken–Tuncel '17]	?
	[Baniasadi–Tuncel '20]	

Known ENR

- Both the transmitter and the receiver know the exact ENR
- The signal s_{x^k} may be optimized for the true ENR value

Unknown ENR

- Only the receiver knows the ENR
- The transmitter accommodate for multiple noise levels
- Work has two parts:
 - **1** known ENR & scalar source (k = 1)
 - Unknown ENR

Part I

Known ENR

Infinite Blocklength $(k \to \infty)$

Outer Bound — Separation [Shannon '59]

• The optimal distortion:

$$h(x) - \frac{1}{2}\log(2\pi eD) \leqslant R(D) \leqslant C = WT \cdot \log\left(1 + \frac{P}{N \cdot W}\right)$$

• $\lim_{W \to \infty} WT \cdot \log \left(1 + \frac{P}{N \cdot W}\right) = \frac{PT}{N} \triangleq \text{ENR}$

$$D_{\infty}^* \geqslant \frac{\mathrm{e}^{2h(x)}}{2\pi\mathrm{e}} \mathrm{e}^{-2\mathrm{ENR}}$$

- Tight for $k \to \infty$, Gaussian source and known ENR
- Cannot be attained for finite blocklength [Gastpar '03]

Achievability — Random Coding

- Separation-based random coding
- Achieves D_{∞}^* for $k \to \infty$

Scalar Source (k = 1)

Scalar Source Bound [Burnashev '84, '86]

• For k = 1:

$$D^* \geqslant K_1 \cdot e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-K_2} \cdot \{1 + o(1)\}$$

- Exact constants K_1 and K_2 are unknown
- Exponentially tight

Scalar Source — Linear Transmission

Linear transmission, receiver employs LMMSE

$$s_{x}(t) = \sqrt{E} \frac{x}{\sigma_{x}} \varphi(t),$$
$$y = \int_{-\frac{T}{2}}^{\frac{T}{2}} \varphi(t) r(t) dt,$$

$$\hat{\mathbf{x}} = \alpha_{\mathrm{MMSE}} \cdot \mathbf{y}$$

- The distortion is bounded by $\frac{\sigma_{\rm x}^2}{1+2{
 m ENR}}$
 - Decays linearly instead of exponentially

Scalar Source (k = 1)

Closing the Gap — Channel Coding [Burnashev '84, '86]

- Quantize the source using uniform scalar quantization
- Transmit with orthogonal signaling (capacity achieving)
 - ullet $s_i(t)$ is the i'th basis function of an orthogonal basis of size N

Scalar quantization—orthogonal modulation scheme:

Known ENR - Achievability Bounds

Performance

Distortion is upper bounded by:

$$D \leqslant K \cdot e^{-rac{\mathrm{ENR}}{3}} \cdot \{1 + o(1)\}$$

- Achieves the exponential rate of the outer bound
 - Is $K_2 = 0$ optimal?
- The constant *K* can be optimized by the usage of non-uniform quantizer [Sevinç and Tuncel '16]

Disadvantages

- Separation:
 - Fails to attain the next decaying order of ENR^{-K_2}
 - Saturates for high ENRs
- Scalar quantization is sub-optimal!
 - Quantization → finite set of channel inputs
 - Close values mapped to same quantization bin (transmitter-side "hard-decision")
 - Correct channel decoding—quantization dictates performance

Known ENR – Achievability Bounds

Idea: JSCC instead of quantization and channel coding

Analog PPM

- Transmit a rectangular pulse with width $1/\beta$
- Pulse delay = current source realization
 - No quantization fully analog transmission
- Estimate delay using Maximum A-Posteriori (MAP) estimator

JSCC using analog PPM scheme:

- $\lambda(a) = \frac{2\sqrt{E}}{N} \int_{-\infty}^{\infty} r(t)\phi(t a\Delta)dt + \log(f_x(a))$
- $f_x(a)$ the source density
- \bullet ϕ can be optimized—rectangular pulse allows analytical analysis

JSCC using analog PPM scheme:

Key properties

- No quantization direct mapping of source to channel inputs
- Distinction between close source values (transmitter-side "soft-decision")
- Small noise values small distortion

Delay Estimation

- Analog PPM hinges on delay estimation of known pulse corrupted by AWGN
 - Fundamental problem in signal processing and radar
 - Received much attention over the years closed-form distortion expressions remain an open problem

Analysis

- Analysis based on properties of Wiener processes:
 - Split to large and small errors:

$$\mathbb{E}\left[\epsilon^{2}\right] \leq \mathbb{E}\left[\epsilon^{2} \middle| |\epsilon| \leq \frac{1}{\beta}\right] + P\left(|\epsilon| > \frac{1}{\beta}\right) \mathbb{E}\left[\epsilon^{2} \middle| |\epsilon| > \frac{1}{\beta}\right]$$

$$\triangleq D_{S} + P_{I} D_{I}$$

- Small errors: second moment of the argmax of a Wiener process with drift [Zehavi '84]
- Large errors: probability of error for orthogonal signals with unequal prior [Ziv and Zakai '69]

Proposition: Uniform Source Performance

$$D \leqslant D_S + D_L P_L$$

•
$$D_S \triangleq \frac{13/8}{(\beta \text{ENR})^2} \cdot \{1 + o(1)\}$$

•
$$D_L \triangleq \frac{1}{6} \left(1 + \frac{2}{\beta} + \frac{4}{\beta^2} \right)$$

•
$$P_L \triangleq \frac{\beta\sqrt{\text{ENRe}}^{-\frac{\text{ENR}}{2}}}{16\sqrt{\pi}} \cdot \{1 + o(1)\}$$

Theorem: Upper Bound on Optimal Distortion

• Setting $\beta = (312\sqrt{\pi})^{\frac{1}{3}} (ENR)^{-\frac{5}{6}} e^{\frac{ENR}{6}}$ yields

$$D \le 0.072 \,\mathrm{e}^{-\frac{\mathrm{ENR}}{3}} \cdot \mathrm{ENR}^{-\frac{1}{3}} \cdot \{1 + o(1)\}$$

Proposition: Gaussian Source Performance

$$D \leqslant D_S + D_L$$

- $D_S \triangleq \frac{13/8}{(\beta \text{ENR})^2} \cdot \{1 + o(1)\}$
- $D_I \triangleq 2\beta\sqrt{\text{ENR}} \cdot e^{-\frac{\text{ENR}}{2}} \cdot \{1 + o(1)\}$

Theorem: Upper Bound on Optimal Distortion

- Setting $\beta = \left(\frac{13}{8}\right)^{\frac{1}{3}} (ENR)^{-\frac{5}{6}} e^{\frac{ENR}{6}}$ yields
 - $D \le 3 \cdot \left(\frac{13}{8}\right)^{\frac{1}{3}} e^{-\frac{\text{ENR}}{3}} \cdot \text{ENR}^{-\frac{1}{3}} \cdot \{1 + o(1)\}$

Numerical Evaluation

• Numerical optimization of the empirical performance and the complete bounds

Figure: Gaussian source SDR

Figure: Uniform source SDR

Exponentially optimal, achieves next polynomial order

Numerical Evaluation

Comparison to Burnashev and Sevine—Tuncel performance

Figure: Gaussian source SDR

Figure: Uniform source SDR

Analog PPM—Robustness

"Why Analog PPM is good for Unknown ENR"

ENR Robustness

For ENR > ENR₀, the term $D_L P_L$ is negligible:

$$D \cong \frac{13/8}{(\beta \text{ENR})^2}$$

• $ENR > ENR_0$ — quadratic decay

Figure: Gaussian source, $\beta = 3.68$

Known ENR Summary

Summary

- Separation based schemes:
 - Does not achieve additional polynomial decay
 - ② Does not improve for $ENR > ENR_0$
- We circumvent those drawbacks by using analog JSCC
 - Achieves both exponential and polynomial decay terms—Settles an open problem about the gap between Burnashev's bounds
 - 2 Improves quadratically for $ENR > ENR_0$

Limitations

- ullet eta can be optimized only for specific ENR
- For constant β , the distortion decays quadratically

Part II

Unknown ENR

Unknown ENR Regime

Reminder

- Now, only the receiver knows the noise level N
- The transmitter accommodate for multiple noise levels
- Main goal: minimum energy to achieve

$$D \leqslant \sigma_{x}^{2} \mathscr{F}(N), \forall N \geqslant 0$$

We concentrate on polynomial profiles:

$$\mathscr{F}(N) \triangleq \frac{1}{1 + \left(\frac{\tilde{E}}{N}\right)^{L}}, \tilde{E} \in \mathbb{R}^{+}$$

- Scenario received much attention in the finite bandwidth case [Mittal-Phamdo '02], [Reznic-Feder-Zamir '06], [Santhi-Vardy '06], [Bhattad-Narayanan '10]
- Results for the infinite bandwidth scenario attained recently [Köken-Tuncel '17], [Baniasadi-Tuncel '20]

Outer Bounds

Polynomially Decay Profile

Separation based bound [Baniasadi–Tuncel '20]:

$$E_{\min}(L=2) \geqslant 0.804\tilde{E}$$

- Improved family of bounds: utilize the connection between robust transmission and the broadcast channel [Reznic-Feder-Zamir '06], [Köken-Tuncel '17], [Baniasadi-Tuncel '20]
- Best known bound [Baniasadi–Tuncel '20]:

$$E \geqslant E_{\min} (L = 2) \cong 0.905 \tilde{E}$$

Exponentially Decay Profile [Köken-Tuncel '17]

• Exponentially decay profile: $E_{\min} \to \infty$

Achievability: Hybrid Digital-Analog Schemes

Layered Transmission AWGN With $W \rightarrow \infty$ [Köken–Tuncel '17]

- Transmitter:
 - Uncoded transmission: $Y_0 = \sqrt{E_0}X + N_0$
 - Digital transmission: $S_k = Q(e_k), e_k = S_{k-1} Q(S_{k-1})$
- Receiver:
 - **1** Digital: Decodes $\{S_k\}_{k=1}^{\ell}$, ℓ is determined from noise level
 - ② Analog: Estimates \hat{e}_{ℓ} from $\left\{\hat{S}_{k}\right\}_{k=1}^{\ell}$ and Y_{0} , to generate \hat{X}
- ullet Total energy: $E_{\min}\cong 3.184 ilde{E}$

Multiple Uncoded Transmissions [Baniasadi-Tuncel '20]

- Combining multiple uncoded transmissions
- Minimal achievable energy: $E_{\min} \cong 2.32\tilde{E}$

Achievability: Hybrid Digital-Analog Schemes

Drawbacks

- Performance saturation:
 - Quantization does not improve with ENR
 - Uncoded transmissions—improve only linearly
- Linear transmission—inefficient use of BW

Finite BW: Modulo-lattice modulation (MLM) [Reznic-Feder-Zamir '06]

Modulo-based Wyner–Ziv coding outperforms success. refinement.

Our Approach: Two improvements

- Use MLM in infinite BW setting: All layers designed for ENR < True ENR, improve with ENR
- 2 Replace linear transmissions with analog PPM: Better utilization of BW

MLM

• Source comprises of known (j^k) and unknown (q^k) parts $x^k = q^k + i^k$

Transmitted over an additive channel:

$$y^{k} = m^{k} \left(x^{k} \right) + z^{k}, \ \frac{\frac{1}{k} \mathbb{E} \left[\left\| m^{k} \right\|^{2} \right]}{\sigma_{z}^{2}} \triangleq \text{SNR}$$

Transmitter:

$$m^k = [\eta x^k + d^k]_{\Lambda}$$

- $d^k \sim \text{Unif}(\mathcal{V}_0)$, dither signal
- Receiver:

$$\tilde{y}^{k} = [\alpha_{c}y^{k} - \eta j^{k} - d^{k}]_{\Lambda} = [\eta q^{k} + z_{\text{eff}}^{k}]_{\Lambda},$$
$$\hat{x}^{k} = \frac{\alpha_{s}}{\eta}\tilde{y}^{k} + j^{k}$$

Modulo-Lattice Modulation (MLM)

MLM Performance [Kochman Zamir '09, Ordentlich Erez '16]

Let q^k and z^k be semi norm-ergodic sequences. Then,

$$D \leqslant \frac{\sigma_q^2}{1 + \text{SNR}} \triangleq D^*$$

Semi norm-ergodic:

$$\Pr\left(a^{k} \notin \mathcal{B}\left(0, \sqrt{(1+\delta) k\sigma_{a}}\right)\right) \leqslant \epsilon$$

Universality [Kochman–Zamir '09, Ordentlich–Erez '16]

- SNR \geqslant SNR₀, $\sigma_q^2 \leqslant \tilde{\sigma}_q^2$
- Tx oblivious of SNR and σ_a^2 , knows SNR₀ and $\tilde{\sigma}_a^2$

$$\begin{split} D \leqslant \min \left\{ \frac{\sigma_q^2}{1 + \mathrm{SNR_0}}, \frac{\tilde{\sigma}_q^2}{1 + \mathrm{SNR}} \cdot \frac{1 + \mathrm{SNR_0}}{\mathrm{SNR_0}} \right\} \\ \bullet \ \ \text{For } \mathrm{SNR} \geqslant \mathrm{SNR_0} \gg 1 \colon D \to \frac{\sigma_q^2}{1 + \mathrm{SNR}} = D^* \end{split}$$

M-Layer Transmitter

"Black-box" approach:

- Generate set of "layers" using modulo-encoding (MLM)
- Transmit independently using scalar JSCC scheme

M Layer Transmitter:

Equivalent Channel

- MLM operates over the channel $m_i^k \to \hat{m}_i^k$
 - Equivalent noise is JSCC output noise
 - 2 Noise not necessarily Gaussian

M-Layer Transmitter

M-Layer Transmitter

Transmitter:

• MLM part: Generates the set of signals

$$m_i^k = [\eta_i x^k + d_i^k]_{\Lambda}, \quad i = 1, \ldots, M$$

- JSCC part:
 - **1** Transmits the entries of x^k using linear transmission
 - 2 Transmits the entries of m_i^k using scalar JSCC scheme with E_i

Receiver: For i = 1, ..., M

- JSCC part: Generates \hat{m}_i^k using the JSCC receiver
- MLM part: Uses the MLM receiver over the channel $m_i^k \to \hat{m}_i^k$ with \hat{x}_{i-1}^k as SI, to generate \hat{x}_i^k

Interleaving

- Interleaving is used between MLM and JSCC steps
 - Receiver applies de-interleaving between JSCC and MLM
- Ensures independence between vector entries
- Allows to use MLM results for semi norm-ergodic variables

Gaussianization [AMIMON '07, No-Weissman '16, Erez-Hadad '16]

- PPM inputs multiplied by orthogonal matrix
- Allows to use analysis of JSCC with Gaussian inputs
- Receiver multiplies by $H^{-1} = H^T$ —Gaussianizes the noise
- Dimension k is general—closed form solutions only for $k \to \infty$

M-Layer Transmitter: Linear

M-Layer Transmitter: Linear Transmissions

Let L > 1, $\tilde{E} > 0$ and $k \to \infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E > \delta_{lin}(L) \tilde{E}$.

$$\begin{split} \text{where} \quad & \delta_{\mathrm{lin}}\left(\mathcal{L}\right) \triangleq \frac{1}{2} \cdot \min_{(\alpha, x) \in \mathbb{R}_{+}^{2}} \left\{ \left(\frac{\mathrm{e}^{\alpha}}{x}\right)^{L-1} \right. \\ & \left. + \frac{x}{2} \left(\mathrm{e}^{\alpha L} - 1\right) \left(1 + \sqrt{1 + \frac{4\mathrm{e}^{\alpha(L+1)}}{(1 - \mathrm{e}^{\alpha L})^{2}}}\right) \frac{\mathrm{e}^{-2\alpha}}{1 - \mathrm{e}^{-\alpha}} \right\} \end{split}$$

- For L = 2, we get E > 2.167E
 - Better than $2.32\tilde{E}$ of other schemes
 - 2 Achieved only by MLM (no PPM yet)

M-Layer Transmitter: PPM

M-Layer Transmitter: PPM Transmissions

Let $L=2, \tilde{E}>0$ and $k\to\infty$. Then, polynomial profile is achievable for any transmit energy E that satisfies $E>1.961\tilde{E},$

- Offers further improvement over linear-based transmitter
- PPM bounds are not tight—improvement is even higher

Figure: Distortion

Figure: Accumulated Energy

M-Layer Transmitter: Scalar

- Numerical simulation of uniform source with k=1
- Quadratic profile

Figure: Distortion

Figure: Accumulated Energy

- Scheme applies for practical low-delay scenario
 - PPM allows saving of transmitted energy

Unknown ENR Summary

Summary

- We introduced robust energy-efficient communication scheme
 - Based on MLM and JSCC
 - 2 Analog PPM offers performance boost
- Total energy is lower than best reported results
 - Real improvement is even higher than theoretical bounds
- Scheme can be used in practical low-delay scenarios

Known ENR

- Optimal polynomial decay:
 - **1** Burnashev's bound: $K_1 = K_2$
 - 2 MAP estimator is sub-optimal [Ibragimov–Khas'minskii '75]: Analysis of full MMSE decoder
- Vector sources: multidimensional mappings

Unknown ENR

- Tightening bounds:
 - 1 Analysis of inner-bound can be improved
 - 2 Different line of works: outer bound
- Universal SI at the receiver
- Dual problem: near-zero bandwidth [Baniasadi-Tuncel '20]

Questions?