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Model Model Scenarios

JSCC Over AWGN With Unlimited Bandwidth

Source: x* € Rk—i.i.d. entries with density f,(a)

Transmitter: s,«(t)

KT
e Input energy constraint E: {2, s (£)]? dt < kE, Vxk
2

Channel: r(t) = s« (t) + n(t)
@ n continuous-time AWGN with two-sided spectral density N/2

—> Transmitter

n(t)

>

(1) é (1)

PT

Receiver

@ Power limited regime: C = - = % = ENR

What is the minimum distortion D = %E [ka — Akﬂz]?
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Model Model Scenarios

JSCC Over AWGN With Unlimited Bandwidth

Infinite blocklength Finite blocklength

Known ENR [Shannon '59] [Burnashev '84, '86]
[Seving and Tuncel '16]
Unknown ENR [Koken—Tuncel '17] ?
[Baniasadi—Tuncel '20]

@ Both the transmitter and the receiver know the exact ENR

@ The signal s« may be optimized for the true ENR value

@ Only the receiver knows the ENR

@ The transmitter accommodate for multiple noise levels

@ Work has two parts:
@ known ENR & scalar source (k = 1)
@ Unknown ENR
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Part |

Known ENR

Omri Lev JSCC Under an Input Energy Constraint



Background Infinite Blocklength Scalar Source

Infinite Blocklength (k — o0)

Outer Bound — Separation [Shannon '59]

@ The optimal distortion:

1 P
h(x) — 5 log(2meD) <R(D) < C = WT - log (1 4 = W>
° VlI/iLnOOWT-Iog(l—kﬁ) = £T 2 ENR

2h(x)
e

D > o—2ENR
© 7 e

@ Tight for k — oo, Gaussian source and known ENR

e Cannot be attained for finite blocklength [Gastpar '03]

Achievability — Random Coding

@ Separation-based random coding

@ Achieves DX for k — oo
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Background Infinite Blocklength Scalar Source

Scalar Source (k = 1)

Scalar Source Bound [Burnashev '84, '86]
@ For k = 1:
EN

D*>Ki-e 3 -ENR . {1+ 0(1)}

@ Exact constants K; and K5 are unknown
o Exponentially tight )

Scalar Source — Linear Transmission

@ Linear transmission, receiver employs LMMSE

5:(t) = VE_—(t),

X

-
y= |7, e
2
X = aMMSE " ¥
o The distortion is bounded by r—sxr
o Decays linearly instead of exponentially
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Background Infinite Blocklength Scalar Source

Scalar Source (k = 1)

Closing the Gap — Channel Coding [Burnashev '84, '86]

@ Quantize the source using uniform scalar quantization
@ Transmit with orthogonal signaling (capacity achieving)
o s;(t) is the i'th basis function of an orthogonal basis of size N

Scalar quantization—orthogonal modulation scheme:

x i rthogonal | Si(t) r(t) ML i R
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Background Infinite Blocklength Scalar Source

Known ENR — Achievability Bounds

Performance

@ Distortion is upper bounded by:
D<K e 5 {1+o0(1)}
@ Achieves the exponential rate of the outer bound

e Is K; = 0 optimal?
@ The constant K can be optimized by the usage of
non-uniform quantizer [Seving and Tuncel '16]

Disadvantages

@ Separation:
@ Fails to attain the next decaying order of ENR K2
@ Saturates for high ENRs
@ Scalar quantization is sub-optimal!
e Quantization — finite set of channel inputs
o Close values mapped to same quantization bin

(transmitter-side “hard-decision”)
e Correct channel decoding—quantization dictates performance )
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Background Infinite Blocklength Scalar Source

Known ENR — Achievability Bounds

Idea: JSCC instead of quantization and channel coding
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Analog PPM Scheme Performance Numerics

Scheme

Analog PPM

e Transmit a rectangular pulse with width 1/
@ Pulse delay = current source realization
o No quantization — fully analog transmission

e Estimate delay using Maximum A-Posteriori (MAP) estimator

JSCC using analog PPM scheme:

x VE@(t — xA) /j’_\ (t) R= ar%g{ﬁx{ﬂa)}

—> Transmitter U Receiver ——mm >

o A(a) = BYE(™ r(t)p(t — a)dt + log (fi(a))
e f(a) — the source density

@ ¢ can be optimized—rectangular pulse allows analytical
analysis
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Analog PPM Scheme Performance Numerics

Analog PPM
JSCC using analog PPM scheme:
n(t)
PR RGN /i\ LA % = argmax {3 (3))
ransmi T erver _—
—> smitte \/ eceivel

Key properties

@ No quantization — direct mapping of source to channel inputs

e Distinction between close source values (transmitter-side
“soft-decision” )

@ Small noise values — small distortion
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Analog PPM Scheme Performance Numerics

Analog PPM

Delay Estimation

@ Analog PPM hinges on delay estimation of known pulse
corrupted by AWGN
© Fundamental problem in signal processing and radar
@ Received much attention over the years — closed-form
distortion expressions remain an open problem

@ Analysis based on properties of Wiener processes:
© Split to large and small errors:

E[e] <E |:62 le] < ;] + P <|e| > ;) E [62
= Ds + P D,

@ Small errors: second moment of the argmax of a Wiener
process with drift [Zehavi '84]

© Large errors: probability of error for orthogonal signals with
unequal prior [Ziv and Zakai '69]

N

> 1]
3
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Analog PPM Scheme Performance Numerics

Analog PPM—Uniform Source

Proposition: Uniform Source Performance

D < D5—|—DLPL

o Ds = i - {1+0(1)}

o D, = (1+ﬂ+62)

o P 2 ﬁvElf;’jE {l+0(1)}

Theorem: Upper Bound on Optimal Distortion

o Setting = (312\/7?)% (ENR)™ sete yields

<0.072¢" 3 -ENR 3 - {1+ o(1)}
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Scheme Performance Numerics

Analog PPM

Analog PPM—Gaussian Source

Proposition: Gaussian Source Performance

D < Ds + D;

o Ds = i - {1+0(1)}

o D, =28VENR-e 2 -{l+0(1)}

[

Theorem: Upper Bound on Optimal Distortion

o Setting 8 = (£ ) (ENR)™ see yields

1
1 3
D<3- (;) —53° UENR 3 - {1+ o(1)}
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Analog PPM Scheme Performance Numerics

Numerical Evaluation

@ Numerical optimization of the empirical performance and the
complete bounds
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o Exponentially optimal, achieves next polynomial order
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Analog PPM Scheme Performance Numerics

Numerical Evaluation

@ Comparison to Burnashev and Seving—Tuncel performance
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Figure: Gaussian source SDR Figure: Uniform source SDR
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Analog PPM

Analog PPM—Robustness

Scheme Performance Numerics

“Why Analog PPM is good for Unknown ENR”
ENR Robustness
For ENR > ENRy, the term D, P; is negligible:
13/8
(BENR)?
e ENR > ENRy — quadratic decay

0 N2 0 Upper Bound
- - = -Asymptotic Bound
‘; I --©-- Empirical

Distortion [dB]
) o .
B
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-,
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Figure: Gaussian source, 8 = 3.68
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Summary Summary

Known ENR Summary

@ Separation based schemes:
© Does not achieve additional polynomial decay
@ Does not improve for ENR > ENRg

@ We circumvent those drawbacks by using analog JSCC
© Achieves both exponential and polynomial decay

terms—Settles an open problem about the gap between
Burnashev’s bounds
@ Improves quadratically for ENR > ENRy )

@ [ can be optimized only for specific ENR

@ For constant (3, the distortion decays quadratically
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Part |l

Unknown ENR

Omri Lev JSCC Under an Input Energy Constraint



Background Regime Results MLM

Unknown ENR Regime

Reminder
@ Now, only the receiver knows the noise level N
@ The transmitter accommodate for multiple noise levels
@ Main goal: minimum energy to achieve
D < o2% (N),¥N =0

X

We concentrate on polynomial profiles:
1 .
F(N) £ ———, EeR"
(7
@ Scenario received much attention in the finite bandwidth case
[Mittal-Phamdo ‘02], [Reznic—Feder-Zamir ‘06],
[Santhi-Vardy '06], [Bhattad—Narayanan '10]
@ Results for the infinite bandwidth scenario attained recently

[Koken—Tuncel '17], [Baniasadi—Tuncel '20]




Background Regime Results MLM

Outer Bounds

Polynomially Decay Profile
@ Separation based bound [Baniasadi—Tuncel '20]:
Enmin (L = 2) = 0.804E
@ Improved family of bounds: utilize the connection between
robust transmission and the broadcast channel
[Reznic—Feder—Zamir ‘06], [Koken—Tuncel '17],
[Baniasadi—Tuncel '20]

@ Best known bound [Baniasadi—Tuncel '20]:
E > Epnin (L = 2) =~ 0.905E

Exponentially Decay Profile [Koken—Tuncel '17]

@ Exponentially decay profile: Epy, — o
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Background Regime Results MLM

Achievability: Hybrid Digital-Analog Schemes

Layered Transmission AWGN With W — oo [Kéken—Tuncel '17]

@ Transmitter:
e Uncoded transmission: Yy = +/EoX + Ny

o Digital transmission: Sy = Q (ex), ex = Sk—1 — Q (Sk—1)

@ Receiver:
© Digital: Decodes {Sk}izl, ¢ is determined from noise level

A Y &
@ Analog: Estimates &, from {Sk} and Yy, to generate X
K

o Total energy: Enin = 3.184E

Multiple Uncoded Transmissions [Baniasadi—Tuncel '20]

@ Combining multiple uncoded transmissions
@ Minimal achievable energy: E i, =~ 2.32E




Background Regime Results MLM

Achievability: Hybrid Digital-Analog Schemes

Drawbacks
@ Performance saturation:
o Quantization does not improve with ENR

e Uncoded transmissions—improve only linearly

@ Linear transmission—inefficient use of BW

Finite BW: Modulo-lattice modulation (MLM) [Reznic—Feder—Zamir '06]

Modulo-based Wyner—Ziv coding outperforms success. refinement.

Our Approach: Two improvements

@ Use MLM in infinite BW setting:
All layers designed for ENR < True ENR, improve with ENR

@ Replace linear transmissions with analog PPM:
Better utilization of BW
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Background Regime Results MLM

Modulo Lattice Modulation (MLM)

@ Source comprises of known (j¥) and unknown (g*) parts

k= qk +jk
Transmitted over an additive channel: )
ety o B[l
y'=m (X)-I—Z , ———— =SNR
O-Z

e Transmitter:
mk =[x + d4]
o d* ~ Unif (%), dither signal

@ Receiver:

75 = [acy® —nj* — d¥]n = [ng" + 2],
(0] .
)?k _ 75}71( +_/k
"

V

Omri Lev JSCC Under an Input Energy Constraint




Background Regime Results MLM

Modulo-Lattice Modulation (MLM)

MLM Performance [Kochman Zamir '09, Ordentlich Erez '16]

Let g¥ and z¥ be semi norm-ergodic sequences. Then,
2

a *

Dgiq
1+ SNR

@ Semi norm-ergodic:

Pr (a"¢9§(0,\/m)> <e

Universality [Kochman—Zamir '09, Ordentlich—Erez '16]

@ SNR > SNRy, 0(27 < 62

q
@ Tx oblivious of SNR and 0(27, knows SNRy and 6(2,
2 ~2
D < min og , og _1+SNR0
1+ SNRgy' 1+ SNR SNRjg
2

@ For SNR > SNRg » 1: D — = D*

_ %
1+SNR )
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Scheme M-layer Remarks

M-Layer Transmitter

“Black-box” approach:
Generate set of “layers” using modulo-encoding (MLM)

Transmit independently using scalar JSCC scheme

M Layer Transmitter:

n(t)
xk MLM mf [ jscc | silt) O MLM £
Tx Encoding Estimation Rx !
A l
R

Equivalent Channel

@ MLM operates over the channel m,’-‘ — n“vff
© Equivalent noise is JSCC output noise

@ Noise not necessarily Gaussian
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Scheme M-layer Remarks

M-Layer Transmitter

xk MLM mf Jscc | sit) ri(t) Jscc I MLM 2k
R — f—> . —> —r>
Tx Encoding Estimation Rx !
A l
R
M-Layer Transmitter

Transmitter:
@ MLM part: Generates the set of signals
mf = [nix" + dfa, i=1,....M
e JSCC part:

@ Transmits the entries of x* using linear transmission
@ Transmits the entries of m,’f using scalar JSCC scheme with E;

Receiver: Fori=1,.... M
o JSCC part: Generates m¥ using the JSCC receiver
@ MLM part: Uses the MLM receiver over the channel

m¥ — Mk with %5 | as S|, to generate X¥

V
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Scheme M-layer Remarks

M-Layer Transmitter: Remarks

Interleaving

@ Interleaving is used between MLM and JSCC steps
o Receiver applies de-interleaving between JSCC and MLM

@ Ensures independence between vector entries

@ Allows to use MLM results for semi norm-ergodic variables

Gaussianization [AMIMON '07, No—Weissman '16, Erez—Hadad '16]

@ PPM inputs multiplied by orthogonal matrix

@ Allows to use analysis of JSCC with Gaussian inputs

@ Receiver multiplies by H™! = HT—Gaussianizes the noise

@ Dimension k is general—closed form solutions only for k — oo
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Performance Linear PPM Scalar

M-Layer Transmitter: Linear

M-Layer Transmitter: Linear Transmissions

Let L > 1, E > 0and k — 0. Then, polynomial profile is
achievable for any transmit energy E that satisfies
E> 6lin (L) E:

where 1 o L1
Otin (L) = 5+ min { (e—)
2 (a,x)eR? X
X ( aL 4ea(L+1) e 2
= —-1)(1 1
+2<e )( - +(1—e“’-)2 1—e @

o For L =2, we get E > 2.167E

O Better than 2.32F of other schemes
@ Achieved only by MLM (no PPM yet)

v
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Performance Linear PPM Scalar

M-Layer Transmitter: PPM

M-Layer Transmitter: PPM Transmissions

Let L =2, E > 0 and k — . Then, polynomial profile is
achievable for any transmit energy E that satisfies
E > 1.961E,

@ Offers further improvement over linear-based transmitter
@ PPM bounds are not tight—improvement is even higher
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Figure: Distortion Figure: Accumulated Energy
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Performance Linear PPM Scalar

M-Layer Transmitter: Scalar

@ Numerical simulation of uniform source with kK =1
@ Quadratic profile
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@ Scheme applies for practical low-delay scenario
o PPM allows saving of transmitted energy
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Summary Summary Future

Unknown ENR Summary

@ We introduced robust energy-efficient communication scheme

@ Based on MLM and JSCC
@ Analog PPM offers performance boost

o Total energy is lower than best reported results
o Real improvement is even higher than theoretical bounds

@ Scheme can be used in practical low-delay scenarios

.
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Summary Summary Future

Future Research

@ Optimal polynomial decay:
@ Burnashev's bound: K; = K>
@ MAP estimator is sub-optimal [Ibragimov—Khas'minskii '75]:
Analysis of full MMSE decoder

@ Vector sources: multidimensional mappings

@ Tightening bounds:

© Analysis of inner-bound can be improved
@ Different line of works: outer bound

@ Universal Sl at the receiver

@ Dual problem: near-zero bandwidth [Baniasadi-Tuncel '20]
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Q&A

Questions?
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